Journal of Henan Agricultural Sciences ›› 2025, Vol. 54 ›› Issue (7): 162-169.DOI: 10.15933/j.cnki.1004-3268.2025.07.017

• Agricultural Information and Engineering and Agricultural Product Processing • Previous Articles     Next Articles

Study on Wheat Spike Automatic Detection Method Based on Improved YOLOv8n

ZANG Hecang1,2,ZHOU Meng1,2,WANG Yahui3,PENG Yilong1,2,ZHAO Qing1,2,ZHANG Jie1,2,LI Guoqiang1,2   

  1. (1.Institute of Agricultural Economy and Information,Henan Academy of Agricultural Sciences,Zhengzhou 450002,China;2.Huanghuaihai Key Laboratory of Intelligent Agricultural Technology,Ministry of Agriculture and Rural Areas,Zhengzhou 450002,China;3.Henan Industry and Trade Vocational College,Zhengzhou 450053,China)
  • Received:2025-04-10 Accepted:2025-05-30 Published:2025-07-15 Online:2025-07-29

基于改进YOLOv8n 的麦穗自动检测方法研究

臧贺藏1,2,周萌1,2,王亚辉3,彭一龙1,2,赵晴1,2,张杰1,2,李国强1,2   

  1. (1.河南省农业科学院 农业信息技术研究所,河南 郑州 450002;2.农业农村部黄淮海智慧农业技术重点实验室,河南 郑州 450002;3.河南工业贸易职业学院,河南 郑州 450053)
  • 通讯作者: 张杰(1979-),女,黑龙江友谊人,副研究员,博士,主要从事农业信息技术研究。E-mail:mooncatmlz@126.com 赵晴(1983-),男,河北辛集人,副研究员,博士,主要从事农业信息技术研究。E-mail:sunflower.701@163.com
  • 作者简介:臧贺藏(1983-),女,河南驻马店人,副研究员,博士,主要从事作物表型鉴定研究。E-mail:zanghecang@163.com
  • 基金资助:
    河南省科技攻关计划项目(242102110353);河南省农业科学院自主创新项目(2025ZC77);河南省农业科学院科技创新团队项目(2024TD07)

Abstract: In wheat breeding,spike number is the key index to evaluate wheat yield.Timely and accurate detection of wheat spike number has important practical significance for early prediction of yield.In actual production,the method of artificial field investigation and statistics of wheat spikes is time‑consuming and laborious. Therefore,this paper proposed an automatic wheat spike detection method based on improved YOLOv8n. Firstly,HGNetV2 was used to improve the network structure to enhance the expression ability of small target wheat spike feature;Secondly,deep separable convolution and pointwise convolution were introduced to improve the computational efficiency and counting performance of the model;Finally,the loss function was improved to optimize the model,accurate determination of wheat ear position and category information was achieved.The test results showed that the accuracy of the improved YOLOv8n in wheat spike detection task was 93.7%,which was 6.5 percentage points higher than that of YOLOv8n.Compared with YOLOv5s and YOLOv8x,the improved YOLOv8n increased by 9.7 percentage point and 0.5 percentage point,which could detect wheat spike images in field complex situations,and had better computer vision processing effect and performance evaluation detection effect.This method can accurately detect the number of small target wheat spikes,and better solve the problem of occlusion and overlapping of wheat spikes.

Key words: Wheat, Spike count, Field phenotype, Target detection, YOLOv8n

摘要: 在小麦育种中,穗数是评估小麦产量的关键指标,及时准确检测小麦穗数对产量早期预测具有重要的实际意义。在实际生产中,采用人工田间调查统计麦穗的方法费时费力。因此,提出了基于改进YOLOv8n的麦穗自动检测方法。首先,利用HGNetV2改进网络结构,增强了小目标麦穗特征的表达能力;其次,引入深度可分离卷积和逐点卷积,提高了模型的计算效率和计数性能;最后,改进损失函数,对模型进行优化,实现了麦穗位置和类别信息的精准判断。结果表明,改进YOLOv8n在麦穗检测任务中的准确率为93.7%,比YOLOv8n提高6.5百分点,与YOLOv5s、YOLOv8x相比,改进YOLOv8n分别提高9.7、0.5百分点,可以在田间复杂情况下检测麦穗图像,具有较好的计算机视觉处理和性能评估检测效果。该方法能够准确地检测出小目标小麦穗数,较好地解决了小麦穗数的遮挡和交叉重叠等问题。

关键词: 小麦, 麦穗计数, 田间表型, 目标检测, YOLOv8n

CLC Number: