[1]CHAUHAN S,DARVISHZADEH R,BOSCHETTI M,et al.Discriminant analysis for lodging severity classification in wheat using RADARSAT‑2 and Sentinel‑1 data[J]. ISPRS Journal of Photogrammetry and Remote Sensing2020,164:138‑151.
[2]MADEC S,JIN X L,LU H,et al. Ear density estimation from high resolution RGB imagery using deep learning technique[J]. Agricultural and Forest Meteorology,2019,264:225‑234.
[3]HE M X,HAO P,XIN Y Z. A robust method for wheatear detection using UAV in natural scenes[J].IEEE Access,2020,8:189043‑189053.
[4]KHOROSHEVSKY F,KHOROSHEVSKY S,BAR‑HILLEL A. Parts‑per‑object count in agricultural images:Solving phenotyping problems via a single deep neural network[J].Remote Sensing,2021,13(13):2496.
[5]LU H,LIU L,LI Y N,et al. TasselNetV3:Explainable plant counting with guided upsampling and background suppression[J]. IEEE Transactions on Geoscience and Remote Sensing,2021,60:4700515.
[6]WANG D Y,ZHANG D Y,YANG G J,et al. SSRNet:In‑field counting wheat ears using multi‑stage convolutional neural network[J].IEEE Transactions on Geoscience and Remote Sensing,2021,60:4403311.
[7]LIU W,ANGUELOV D,ERHAN D,et al. SSD:Single shot MultiBox detector[C]//Computer Vision-ECCV 2016. Cham:Springer,2016:21‑37.
[8]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real‑time object detection[C]//Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV,USA:IEEE,2016:779‑788.
[9]REDMON J,FARHADI A. YOLO9000:Better,faster,stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu,HI,USA:IEEE,2017:6517‑6525.
[10]REDMON J,FARHADI A. YOLOv3:An incremental improvement[C]//Computer Vision and Pattern Recognition(CVPR). Salt Lake City,UT,USA:IEEE,2018:1804. 02767.
[11]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:Optimal speed and accuracy of object detection[C]//Computer Vision and Pattern Recognition (CVPR). Seattle,WA,USA:IEEE,2020:2004. 10934.
[12]ULTRALYTICS. YOLOv5 [EB/OL].(2022‑04‑04)[2025‑02‑18].https://github.com/ultralytics/yolov5.
[13]ZHAO J Q,ZHANG X H,YAN J W,et al. A wheat spike detection method in UAV images based on improved YOLOv5[J].Remote sensing,2021,13(16):3095.
[14]FERNANDEZ‑GALLEGO J A,KEFAUVER S C,GUTIÉRREZ N A,et al. Wheat ear counting in‑field conditions:High throughput and low‑cost approach using RGB images[J]. Plant Methods,2018,14:22.
[15]LU J,HU J,ZHAO G N,et al. An in‑field automatic wheat disease diagnosis system[J].Computers and Electronics in Agriculture,2017,142:369‑379.
[16]鲍文霞,张鑫,胡根生,等.基于深度卷积神经网络的田间麦穗密度估计及计数[J].农业工程学报,2020,36(21):186‑193,323.
BAO W X,ZHANG X,HU G S,et al. Estimation and counting of wheat ears density in field based on deep
convolutional neural network[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(21):186‑193,323.
[17]HASAN M M,CHOPIN J P,LAGA H,et al. Detection and analysis of wheat spikes using Convolutional Neural Networks[J].Plant Methods,2018,14:100.
[18]ZHANG Y,LI M Z,MA X X,et al. High‑precision wheat head detection model based on one‑stage network and GAN model[J]. Frontiers in Plant Science,2022,13:787852.
[19]SADEGHI‑TEHRAN P,VIRLET N,AMPE E M,et al.DeepCount:In‑field automatic quantification of wheat spikes using simple linear iterative clustering and deep convolutional neural networks[J].Frontiers in Plant Science,2019,10:1176.
[20]FERNANDEZ‑GALLEGO J A,BUCHAILLOT M L,APARICIO GUTIÉRREZ N,et al. Automatic wheat ear counting using thermal imagery[J].Remote Sensing,2019,11(7):751.
[21]KHAKI S,SAFAEI N,PHAM H,et al. WheatNet:A lightweight convolutional neural network for high‑throughput image‑based wheat head detection and counting[J]. Neurocomputing,2022,489:78‑89.
[22]孙月平,刘勇,郭佩璇,等. 基于改进YOLOv8n‑seg的蟹塘水草区域分割与定位方法[J].农业工程学报,2024,40(17):224‑233.
SUN Y P,LIU Y,GUO P X,et al. Region segmentation and localization method of water plants in crab pond based on improved YOLOv8n‑seg[J].Transactions of the Chinese Society of Agricultural Engineering,2024,40(17):224‑233.
[23]赵鑫,马双宝. 改进YOLOv8n的织物疵点检测算法[J/OL]. 哈尔滨理工大学学报,2025:1‑12.(2025‑03‑19).https://kns.cnki.net/kcms/detail/23.1404.N.20250318.1537.008.html.
ZHAO X,MA S B. Fabric defect detection algorithm based on improved YOLOv8n[J/OL].Journal of Harbin University of Science and Technology,2025:1‑12(2025-03-19). https://kns.cnki.net/kcms/detail/23.1404.N.20250318.1537.008.html.
[24]文韬,王天一.基于改进YOLOv8n的玉米地杂草检测[J].软件工程,2025,28(3):6‑10.
WEN T,WANG T Y. Weed detection in corn fields based on improved YOLOv8n[J]. Software engineering,2025,28(3):6‑10.
[25]高云鹏.基于深度神经网络的大田小麦麦穗检测方法研究[D].北京:北京林业大学,2019.
GAO Y P.Study on detection method of wheat ear in field based on deep neural network[D].Beijing:Beijing Forestry University,2019.
[26]谢元澄,何超,于增源,等. 复杂大田场景中麦穗检测级联网络优化方法[J].农业机械学报,2020,51(12):212‑219.
XIE Y C,HE C,YU Z Y,et al. Optimization method for cascade network of wheat ear detection in complex filed scene[J].Transactions of the Chinese Society for Agricultural Machinery,2020,51(12):212‑219.
[27]ALKHUDAYDI T,ZHOU J,DE LA LGLESIA B.SpikeletFCN:Counting spikelets from infield wheat crop images using fully convolutional networks[C]//Artificial Intelligence and Soft Computing. Cham:Springer,2019:3‑13.
|