Journal of Henan Agricultural Sciences ›› 2026, Vol. 55 ›› Issue (1): 26-39.DOI: 10.15933/j.cnki.1004-3268.2026.01.003
• Crop Cultivation & Genetic Breeding • Previous Articles Next Articles
LI Chuan,ZHANG Panpan,ZHANG Meiwei,GUO Hanxiao,MU Weilin,NIU Jun,QIAO Jiangfang
Received:2025-06-18
Accepted:2025-08-06
Published:2026-01-15
Online:2026-01-29
李川,张盼盼,张美微,郭涵潇,穆蔚林,牛军,乔江方
通讯作者:
乔江方,副研究员,博士,主要从事玉米高产栽培研究。E-mail:qiaojf@126.com
作者简介:李川,助理研究员,博士,主要从事玉米抗逆机制研究。E-mail:lichuan172@163.com
基金资助:CLC Number:
LI Chuan, ZHANG Panpan, ZHANG Meiwei, GUO Hanxiao, MU Weilin, NIU Jun, QIAO Jiangfang. Screening and Preliminary Exploration of Function of circRNAs Responding to High Temperature Stress in Maize Pollen[J]. Journal of Henan Agricultural Sciences, 2026, 55(1): 26-39.
李川, 张盼盼, 张美微, 郭涵潇, 穆蔚林, 牛军, 乔江方. 玉米花粉中响应高温胁迫circRNA 的筛选及其功能初探[J]. 河南农业科学, 2026, 55(1): 26-39.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnnykx.org.cn/EN/10.15933/j.cnki.1004-3268.2026.01.003
| [1]霍治国,张海燕,李春晖,等. 中国玉米高温热害研究进展[J]. 应用气象学报,2023,34(1):1‐14. HUO Z G,ZHANG H Y,LI C H,et al. Review on high temperature heat damage of maize in China[J].Journal of Applied Meteorological Science,2023,34(1):1‐14. [2]宋英博. 气象灾害对我国玉米安全生产的影响及对策[J].作物研究,2022,36(1):80‐83. SONG Y B.Influence of meteorological disasters on safe production of maize in China and its countermeasures[J].Crop Research,2022,36(1):80‐83. [3]孙永江,王琪,邵琪雯,等. 高温胁迫对植物光合作用的影响研究进展[J].植物学报,2023,58(3):486‐498. SUN Y J,WANG Q,SHAO Q W,et al. Research advances on the effect of high temperature stress on plant photosynthesis[J]. Chinese Bulletin of Botany,2023,58(3):486‐498.[4]李小凡,邵靖宜,于维帧,等. 高温干旱复合胁迫对夏玉米产量及光合特性的影响[J].中国农业科学,2022,55(18):3516‐3529. LI X F,SHAO J Y,YU W Z,et al. Combied effects of high temperature and drougt on yield and photosynthetic characteristics of summer maize[J]. Scientia Agricultura Ainica,2022,55(18):3516‐3529. [5]穆心愿,马智艳,张兰薰,等. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应[J]. 中国生态农业学报(中英文),2022,30 (1):57‐71. MU X Y,MA Z Y,ZHANG L X,et al. Responses of photosynthetic fluorescence characteristics,pollination,and yield components of maize cultivars to high temperature during flowering[J]. Chinese Journal of Eco‐Agriculture,2022,30(1):57‐71. [6]孙武,韩淑华,刘建民,等. 不同玉米品种在小穗分化期和抽雄期对高温胁迫的响应差异[J]. 中国农学通报,2019,35(17):12‐19. SUN W,HAN S H,LIU J M,et al. Response of maize cultivars to high temperature stress at spikelet differentiation stage and tasseling stage[J]. Chinese Agricultural Science Bulletin,2019,35(17):12‐19. [7]吴伟华,柳家友,袁刘正,等. 花期高温对不同玉米品种主要农艺形状和产量的影响[J]. 安徽农业科学,2020,48(6):33‐36. WU W H,LIU J Y,YUAN L Z,et al. Effects of high temperature at florescence stage on the yield and major agronomic characters of different maize varieties[J].Journal of Anhui Agricultural Sciences,2020,48(6):33‐36. [8]杨浩,刘晨,王志飞,等. 作物花粉高温应答机制研究进展[J].植物学报,2019,54(2):157‐167. YANG H,LIU C,WANG Z F,et al. Advances in the regulatory mechanisms of pollen response to heat stress in crops[J]. Chinese Bulletin of Botany,2019,54(2):157‐167.[9]余梦奇,路梦莉,张雅婷,等. 灌浆期高温对玉米叶片光合特性及抗氧化酶活性的影响[J]. 中国农业气象, 2023,44(7):599‐610.YU M Q,LU M L,ZHANG Y T,et al. Effects of high temperature on photosynthetic characteristics and antioxidant enzyme activities of maize leaves during filling stage[J]. Chinese Journal of Agrometeorology,2023,44 (7):599‐610. [10]吴丽倩,王蕊,杨玉荣,等. 高温对玉米叶片衰老及产量的影响[J].华北农学报,2022,37(S1):110‐115. WU L Q,WANG R,YANG Y R,et al. Effects of high temperature on leaf senescence and yield of maize[J].Acta Agriculturae Boreali‐Sinica,2022,37(S1):110‐115.[11]王涛,冯敬磊,张翠. 高温胁迫影响玉米生长发育的分子机制研究进展[J].植物学报,2024,59(6):963‐977. WANG T,FENG J L,ZHANG C. Research progress on molecular mechanisms of heat stress affecting the growth and development of maize[J]. Chinese Bulletin of Botany,2024,59(6):963‐977.[12]尹军良,马东方,刘乐承,等. 环状RNA的生物特征及其在植物中的研究进展[J].西北植物学报,2017,37(12):2510‐2518. YIN J L,MA D F,LIU L C,et al. Biology features of circular RNAs and their research progress in plants [J]. Acta Botanica Boreali‐Occidentalia Sinica,2017,37(12):2510‐2518. [13]周凤燕,杨青,朱熙春,等. 环状RNA的分子特征、作用机制及生物学功能[J]. 农业生物技术学报,2017,25 (3):485‐501. ZHOU F Y,YANG Q,ZHU X C,et al. Molecular feature,action mechanism and biology function of circular RNA [J]. Journal of Agricultural Biotechnology,2017,25(3):485‐501. [14]PATOP I L,WÜST S,KADENER S. Past,present,and future of circRNAs[J]. The EMBO Journal,2019,38(16):e100836. [15]LI Z Y,HUANG C,BAO C,et al. Exon‐intron circular RNAs regulate transcription in the nucleus[J]. Nature Structural & Molecular Biology,2015,22(3):256‐264. [16]CHEN L L. The biogenesis and emerging roles of circular RNAs[J].Nature Reviews Molecular Cell Biology,2016,17(4):205‐211. [17]ASHWAL‐FLUSS R,MEYER M,PAMUDURTI N R,et al. circRNA biogenesis competes with pre‐mRNA splicing[J]. Molecular Cell,2014,56(1):55‐66. [18]EBBESEN K K,KJEMS J,HANSEN T B. Circular RNAs:Identification,biogenesis and function[J].Biochimica et Biophysica Acta (BBA) ‐ Gene Regulatory Mechanisms,2016,1859(1):163‐168. [19]ZUO J H,WANG Q,ZHU B Z,et al. Deciphering the roles of circRNAs on chilling injury in tomato[J].Biochemical and Biophysical Research Communications,2016,479(2):132‐138. [20]GAO Z,LI J,LUO M,et al. Characterization and cloning of grape circular RNAs identified the cold resistance‐related Vv‑circATS1[J]. Plant Physiology,2019,180(2):966‐985. [21]CHENG J P,ZHANG Y,LI Z W,et al. A lariat‐derived circular RNA is required for plant development in Arabidopsis[J]. Science China Life Sciences,2018,61 (2):204‐213. [22]SONG Y P,BU C H,CHEN P F,et al. Miniature inverted repeat transposable elements cis‐regulate circular RNA expression and promote ethylene biosynthesis,reducing heat tolerance in Populus tomentosa[J].Journal of Experimental Botany,2021,72 (5):1978‐1994. [23]CHEN L,ZHANG P,FAN Y,et al. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize[J].New Phytologist,2018,217(3):1292‐1306. [24]XU J,WANG Q,TANG X,et al. Drought‐induced circular RNAs in maize roots:Separating signal from noise[J]. Plant Physiology,2024,196(1):352‐367. [25]ZUO J H,WANG Y X,ZHU B Z,et al. Analysis of the coding and non‐coding RNA transcriptomes in response to bell pepper chilling[J]. International Journal of Molecular Sciences,2018,19(7):2001. [26]HUANG J,WANG Y L,YU J,et al. Evolutionary landscape of tea circular RNAs and its contribution to chilling tolerance of tea plant[J]. International Journal of Molecular Sciences,2023,24(2):1478. [27] PAN T,SUN X Q,LIU Y X,et al. Heat stress alters genome‐wide profiles of circular RNAs in Arabidopsis[J]. Plant Molecular Biology,2018,96:217‐229. [28]WANG X S,CHANG X C,JING Y,et al. Identification and functional prediction of soybean circRNAs involved in low‐temperature responses[J]. Journal of Plant Physiology,2020,250:153188. [29]FANG F,YE S W,TANG J Y,et al. DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice[J]. New Phytologist,2020,225(3):1234‐1246. [30]HAO C,YANG Y Z,DU J M,et al. The PCY‐SAG14 phytocyanin module regulated by PIFs and miR408 promotes dark‐induced leaf senescence in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(3):e2116623119. [31]XU Z P, GAO Y H, GAO C X, et al.Glycosylphosphatidylinositol anchor lipid remodeling directs proteins to the plasma membrane and governs cell wall mechanics[J]. The Plant Cell,2022,34(12):4778‐4794.
[32]张敏敏. 植物糖基化磷脂酰肌醇锚定蛋白协助受体激酶转运的机制研究[D]. 上海:华东师范大学,2019.
[33]杨春霞,胥猛,王明庥,等. 植物中miR160/miR167/miR390家族及其靶基因研究进展[J].南京林业大学学报,2014,38(3):155‐159.
[34]赵思航,刘昊东,徐渴,等. 小麦中MIR160基因家族的生物信息学分析及靶基因鉴定[J]. 分子植物育种,2023,21(1):27‐35. [35]ŞANL B A,ÖZTÜRK GÖKÇE Z N. Investigating effect of miR160 through overexpression in potato cultivars under single or combination of heat and drought stresses[J]. Plant Biotechnology Reports,2021,15(3):335‐348. [36]CHUCK G,MARK CIGAN A,SAETEURN K,et al.The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA[J]. Nature Genetics,2007,39(4):544‐549.
[37]王多佳,王政委,任志鹏,等. 冬小麦miR172响应抗寒的特征分析[J]. 麦类作物学报,2023,43(10):1304‐1310. [38]ZHANG Y Q,WASEEM M,ZENG Z H,et al.microRNA482/2118,a miRNA superfamily essential for both disease resistance and plant development[J].New Phytologist,2022,233(5):2047‐2057.
[39]莫显兰,史列琴,陆秋利,等. Sl-miR482在番茄果实中的表达分析及STTM沉默载体的构建[J].生物技术通报,2019,35(12):50‐56.
[40]姜孝成,田建红,黄科瑞,等. miR164家族及其调控种子发育与种子活力的研究进展[J]. 生命科学研究,2024,28(6):471‐502.
[41]牟桂萍,纪春艳,许东林,等. 植物miR164家族研究进展[J].生命科学,2013,25(5):525‐531. [42]张好军. miR164调控玉米籽粒发育的信号通路解析[D]. 雅安:四川农业大学,2019. ZHANG H J. Signal pathway analysis of miR164 regulating maize grain development[D]. Yaan:Sichuan Agricultural University,2019. [43]LUAN M D,XU X Y,LU Y M,et al. Family‐wide survey of miR169s and NF‐YAs and Their expression profiles response to abiotic stress in maize roots[J].PLoS One,2014,9(3):e91369. [44]RAGUPATHY R,RAVICHANDRAN S,MAHDI M S R, et al. Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat,light and UV[J].Scientific Reports,2016,6:39373. |
| [1] | LI Yanhua, LI Chunyang, WU Xiaolin, WANG Wei, LIU Hui. Genome‐Wide Identification of IDL Gene Family in Maize and Its Expression Analysis during Root Development [J]. Journal of Henan Agricultural Sciences, 2026, 55(1): 52-64. |
| [2] | WEI Xiaoyi, LIU Zhicheng, ZHANG Zhanhui, SHI Dakun, LI Fangjie, HONG Defeng, SUN Pei, LI Zhi, WEI Feng. Preliminary Study on Molecular Mechanism of Drought Tolerance of Maize Inbred Line Xin 4095 Based on miRNA‐mRNA Integration Analysis Technology [J]. Journal of Henan Agricultural Sciences, 2026, 55(1): 40-51. |
| [3] | ZHANG Jili, ZHANG Tie, LIU Zhenping, WANG Peng, LONG Huaiyu. Effect of Allantoin on Phosphorus Uptake and Transport in Maize under Dry and Wet Alternation of Soil Moisture [J]. Journal of Henan Agricultural Sciences, 2025, 54(6): 55-62. |
| [4] | LI Hua, CHEN Liang, DU Leichao, LIU Bin, ZHANG Shengyin, ZHANG Jinghui. Effects of Different Application Depth and Application Amount of Water Retaining Agent on Photosynthetic Characteristics,Yield and Water Use Efficiency of Maize [J]. Journal of Henan Agricultural Sciences, 2025, 54(5): 10-22. |
| [5] | ZHANG Panpan, SHAO Yunhui, LI Chunhua, MU Weilin, GUO Hanxiao, LI Chuan, ZHANG Meiwei, ZHAO Shuangsuo, HU Yanqi, HAN Linlin, QIAO Jiangfang. Effect of Nitrogen and Zinc Application on Accumulation and Distribution of Mineral Elements in Grain at Different Positions of Ear of Maize with Different Zn Efficiency [J]. Journal of Henan Agricultural Sciences, 2025, 54(4): 11-26. |
| [6] | NIU Wenyan, LI Xiaojie, XU Min, QIU Rui, BAI Jingke, LIU Chang, CHEN Yuguo, SI Junke, LI Shujun, SONG Pengyu, SONG Shouye. Screening and Identification of Plant Growth⁃Promoting Rhizobacteria and Their Growth⁃Promoting Effects on Tobacco [J]. Journal of Henan Agricultural Sciences, 2025, 54(3): 50-59. |
| [7] | DENG Cong, MA Lu, WANG Qingsong, FU Jian, WANG Yufeng, YANG Kejun. Effect of Bacillus on Seed Germination and Physiological and Biochemical Characteristics of Maize under Salt⁃Alkali Stress [J]. Journal of Henan Agricultural Sciences, 2025, 54(3): 20-30. |
| [8] | YANG Ruosheng, LI Jiuying, XUE Fei, SUN Lanlan, SU Wangcang, XU Hongle, WU Renhai. Investigation of Weed Community in Soybean Field and Screening of Highly Effective Herbicides [J]. Journal of Henan Agricultural Sciences, 2025, 54(12): 110-120. |
| [9] | ZHANG Meiwei, GUO Hanxiao, ZHAO Shuangsuo, HU Yanqi, MU Weilin, ZHANG Panpan, LI Chuan, ZHENG Fei, QIAO Jiangfang. Effects of Irrigation Amount and Nitrogen Application Rate on Dry Matter Accumulation and Yield of Maize under Different Densities [J]. Journal of Henan Agricultural Sciences, 2025, 54(12): 13-22. |
| [10] | GENG Sainan, LI Lantao, YANG Qirui, ZHOU Qi, REN Tianbao, WANG Yilun. Effects of Combined Application of Carbon‑Based Fertilizer and Chemical Fertilizer under Winter Wheat‑Summer Maize Rotation [J]. Journal of Henan Agricultural Sciences, 2025, 54(11): 62-69. |
| [11] | SHI Dakun, LI Fangjie, WEI Xiaoyi, HONG Defeng, LIU Jingwei, WANG Jiamu, ZHANG Xuehai, WEI Feng. Stalk Traits and Comprehensive Evaluation of Lodging Resistance of 150 Maize Inbred Lines [J]. Journal of Henan Agricultural Sciences, 2025, 54(10): 51-59. |
| [12] | HUANG Ping, YANG Ce, PENG Jianying, ZHANG Yuxing. Studies on Pollen Viability and Storage Characteristics of Yuluxiang Pear Hybrid Progeny [J]. Journal of Henan Agricultural Sciences, 2025, 54(1): 136-143. |
| [13] | LI Kai, LUO Shiwu, WANG Zhan, YANG Junxue, WANG Yong, WANG Fei, ZHANG Jiantong. Effects of Different Types of Surface Mulching on Soil Environment and Growth of Forage Crop in Ningxia Dry Farming Area [J]. Journal of Henan Agricultural Sciences, 2025, 54(1): 90-100. |
| [14] | LIU Xinyi, LIAO Zhijie, LÜ Dan, MO Jiamei, JIA Wei, LUO Hongbing. Analysis of Agronomic Traits and Physiological Mechanism of Maize Cytoplasmic Male Sterility Line C01 [J]. Journal of Henan Agricultural Sciences, 2025, 54(1): 21-27. |
| [15] | ZHANG Panpan, LI Chuan, ZHANG Meiwei, YU Xiaohong, MU Weilin, GUO Hanxiao, QIAO Jiangfang, ZHANG Guitang. Effect of Nitrogen and Zinc Application on Filling Characteristics of Grains at Different Positions of Maize Ear [J]. Journal of Henan Agricultural Sciences, 2024, 53(9): 16-27. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||