河南农业科学 ›› 2025, Vol. 54 ›› Issue (8): 51-59.DOI: 10.15933/j.cnki.1004-3268.2025.08.005
王淑君,邢璐
收稿日期:
2025-05-30
接受日期:
2025-07-21
出版日期:
2025-08-15
发布日期:
2025-08-15
作者简介:
王淑君(1982-),女,河南安阳人,副研究员,硕士,主要从事谷子遗传育种及栽培生理研究。E-mail:logccc@163.com
基金资助:
WANG Shujun,XING Lu
Received:
2025-05-30
Accepted:
2025-07-21
Published:
2025-08-15
Online:
2025-08-15
摘要: 为准确筛选丰产性、稳产性好和适应性广的谷子品种,利用最佳线性无偏预测(BLUP)数据代替产量原始数据对2023—2024年全国谷子品种区域适应性联合鉴定(华北夏谷区组)试验的9个谷子品种和14个试点进行GGE 双标图分析。通过对比热图和方差分析结果发现,BLUP数据降低了产量变异系数,能够更真实地反映品种的遗传潜力;同时,对产量总变异的解释(94.95%)明显高于原始数据(72.51%),提高了分析的准确性。利用BLUP数据进行GGE双标图分析发现,豫谷101、郑谷678和中谷855丰产性较好,邯谷6号、中谷855和沧471稳产性较好,豫谷101、中谷855丰产性和稳产性综合表现较好;豫谷101适应性最广,其次是中谷855。辽宁省的锦州、山东省的泰安和河南省的安阳3个试点是具有较强区分力和较好代表性的理想试点。综上,豫谷101、中谷855是丰产性、稳产性、适应性均较好的理想谷子品种,适合在华北夏谷区推广种植。
中图分类号:
王淑君, 邢璐. 基于BLUP和GGE双标图的谷子区域试验分析[J]. 河南农业科学, 2025, 54(8): 51-59.
WANG Shujun, XING Lu. Analysis of Foxtail Millet Regional Trials Based on BLUP and GGE Biplot[J]. Journal of Henan Agricultural Sciences, 2025, 54(8): 51-59.
[1]刁现民,程汝宏. 十五年区试数据分析展示谷子糜子育种现状[J]. 中国农业科学,2017,50(23):4469‑4474. DIAO X M,CHENG R H. Current breeding situation of foxtail millet and common millet in China as revealed by exploitation of 15 years regional adaptation test data[J]. Scientia Agricultura Sinica,2017,50(23) :4469‑4474. [2]刁现民,王立伟,智慧,等. 谷子中矮秆资源创制、遗传解析和育种利用[J].作物学报,2024,50(2):265‑279. DIAO X M,WANG L W,ZHI H,et al. Development,genetic deciphering,and breeding utilization of dwarf lines in foxtail mille[t J]. Acta Agronomica Sinica,2024,50(2):265‑279.[3]魏常敏,许卫猛,邢永锋,等. AMMI模型和GGE双标图在黄淮海甜玉米中的应用[J]. 分子植物育种,2021,19(17):5909‑5916. WEI C M,XU W M,XING Y F,et al. Application of AMMI model and GGE biplot of sweet maize varieties in Huang‑Huai‑Hai region[J].Molecular Plant Breeding,2021,19(17):5909‑5916.[4]杨忠妍,任晓利,李素英,等. 对作物区域试验中参试品种产量统计方法问题的探讨[J]. 中国农学通报,2014,30(33):133‑140. YANG Z Y,REN X L,LI S Y,et al. Study on the method of statistics analysis of tested varieties yield in regional crop trials[J]. Chinese Agricultural Science Bulletin,2014,30(33):133‑140. [5]孙璇,姚琳,张高杨,等. 基因型和环境互作对黄淮区油菜产量的影响[J].分子植物育种,2024,22(14):4671‑4680. SUN X,YAO L,ZHANG G Y,et al. Effect of interaction between genotype and environment on rapeseed yield in Huang‑Huai region[J]. Molecular Plant Breeding,2024,22(14):4671‑4680. [6]程玲,张心菲,张鑫鑫,等. 基于BLUP和GGE双标图的林木多地点试验分析[J].西北农林科技大学学报(自然科学版),2018,46(3):87‑93. CHENG L,ZHANG X F,ZHANG X X,et al. Forestry multi‑environment trial analysis based on BLUP and GGE biplot[J]. Journal of Northwest A & F University(Natural Science Edition),2018,46(3):87‑93. [7]曹元元,丁逸帆,左示敏,等. 基于GGE双标图和AMMI 模型对江苏省水稻区试品种的丰产性和稳定性分析[J]. 种子,2021,40(6):38‑43. CAO Y Y,DING Y F,ZUO S M,et al. Analysis of yielding ability and stability of rice varieties tested in Jiangsu Province based on GGE biplot and AMMI model[J]. Seed,2021,40(6):38‑43. [8]郭建炜,徐冬丽,王国平,等. 基于GGE模型对甘肃省青稞多年多点区试品种稳定性分析[J]. 分子植物育种,2024,22(11):3677‑3684. GUO J W,XU D L,WANG G P,et al. Stability analysis of hulless barley varieties in multi‑year multipoint regional trials in Gansu based on GGE model[J].Molecular Plant Breeding,2024,22(11):3677‑3684.[9]李梦,周显兵,刘锋博,等. 基于GGE双标图的油菜新品种陕油1609丰产稳产适应性分析[J]. 种子,2023,42(7):122‑128. LI M,ZHOU X B,LIU F B,et al. Analysis on the high and stable yield,and the adaptability of new rapeseed variety Shanyou1609 based on GGE biplot[J]. Seed,2023,42(7):122‑128.[10]唐义,刘建新,李清超,等. 基于GGE双标图的玉米丰产稳产及适应性研究[J].中国农学通报,2024,40(18):9‑13. TANG Y,LIU J X,LI Q C,et al. Study on yielding ability,stability and adaptability in maize based on GGE‑biplo[t J]. Chinese Agricultural Science Bulletin,2024,40(18):9‑13.[11]吴晓东,李海燕,王天硕,等. GGE双标图法评价辽棉50的丰产性稳产性及适应性[J]. 中国棉花,2024,51(7):33‑37. WU X D,LI H Y,WANG T S,et al. Evaluation on yield stability and adaptability of Liaomian 50 by GGE biplot analysis[J]. China Cotton,2024,51(7):33‑37.[12]穆兰海,常克勤,杜燕萍,等. AMMI模型和GGE双标图对宁夏不同气候类型区苦荞品种稳产性适应性分析[J].黑龙江农业科学,2024(2):8‑14. MU L H,CHANG K Q,DU Y P,et al. Analysis of stable yield adaptability of Fagopyrum tataricum varieties in different climate regions of Ningxia using AMMI model and GGE double label map[J].Heilongjiang Agricultural Sciences,2024(2):8‑14. [13]文浩雨,张杰,李慧玉,等. 基于BLUP-GGE双标图的白桦子代多地点速生性及稳定性分析[J].北京林业大学学报,2024,46(10):53‑62. WEN H Y,ZHANG J,LI H Y,et al. Analysis of fast‑growing and stability characteristics of Betula platyphylla progeny at multiple locations based on BLUP‑GGE biplot[J]. Journal of Beijing Forestry University,2024,46(10):53‑62. [14]李金花. 基于BLUP和GGE双标图的黑杨派无性系生长性状基因型与环境互作效应[J]. 林业科学,2021,57(6):64‑73. LI J H. Genotype by environment interaction for growth traits of clones of Populus section aigeiros based on BLUP and GGE biplot[J].Scientia Silvae Sinicae,2021,57(6):64‑73. [15]俞渭江,洪振中. 种公牛选择方法研究:应用最优线性无偏估计乳用种公牛育种值的方法[J].中国农业科学,1984,17(5):77‑83. YU W J,HONG Z Z. Studies on methods for the selection of dairy sires:The application of best linear unbiased prediction to dairy sire evaluation[J].Scientia Agricultura Sinica,1984,17(5):77‑83. [16]钱宏光,布仁,巴图,等. BLUP法在肉羊育种中的应用初探[J].中国草食动物,2000,2(4):22‑24. QIAN H G,BU R,BA T,et al. Preliminary study on the application of BLUP method in mutton sheep breeding[J]. China Herbivores,2000,2(4):22‑24.[17]孙寿永. 动物模型BLUP法及其应用的综述[J]. 畜牧兽医杂志,2008,27(3):56‑59. SUN S Y. Summarization of animal model BLUP and its application[J]. Journal of Animal Science and Veterinary Medicine,2008,27(3):56‑59.[18]杨涛,张敏婕,徐然,等. 应用BLUP方法对猪繁殖性状和生长性状遗传评估的研究[J]. 中国畜牧兽医,2022,49(8):2971‑2981. YANG T,ZHANG M J,XU R,et al. Study on genetic evaluation of reproductive and growth traits in pigs by BLUP method[J]. China Animal Husbandry &Veterinary Medicine,2022,49(8):2971‑2981.[19]牛晋鸿,王天欣,曹明嵘,等. 基于FAI-BLUP多性状选择指数的耐低氮杨树品种筛选[J].林业科学研究,2025,38(1):61‑72. NIU J H,WANG T X,CAO M R,et al. Screening of poplar varieties with low‑nitrogen tolerance based on FAI‑BLUP multiple trait selection index[J]. Forest Research,2025,38(1):61‑72.[20]孙晓梅,杨秀艳. 林木育种值预测方法的应用与分析[J].北京林业大学学报,2011,33(2):65‑71. SUN X M,YANG X Y. Applications and analysis of methods for breeding value prediction in forest trees[J].Journal of Beijing Forestry University,2011,33 (2):65‑71. [21]于沐,杨海棠,石彦召,等. 基于BLUP值的黄淮麦套大果花生的综合分析[J].花生学报,2024,53(3):60‑67. YU M,YANG H T,SHI Y Z,et al. Comprehensive analysis of large‑kernel peanut intercropped with wheat in the Huanghuai region based on BLUP values[J]. Journal of Peanut Science,2024,53(3):60‑67. [22]唐有林,王蕾,王寒冬,等. 燕麦种质资源表型多样性及综合评价[J].应用与环境生物学报,2024,30(6):1236‑1244. TANG Y L,WANG L,WANG H D,et al. Phenotypic diversity analysis and comprehensive evaluation of oat germplasms[J]. Chinese Journal of Applied and Environmental Biology,2024,30(6):1236‑1244.[23]常世豪,耿臻,杨青春,等. 基于BLUP值的夏大豆产量与农艺性状的相关分析[J].作物杂志,2023(5):10‑15. CHANG S H,GENG Z,YANG Q C,et al. Correlation analysis of yield and agronomic traits of summer soybean based on BLUP value[J]. Crops,2023(5):10‑15. [24]郭璁,刘乐,张叶,等. 基于BLUP值的99种文心兰花梗性状相关分析[J].分子植物育种,2024,22(23):7827‑7836. GUO C,LIU L,ZHANG Y,et al. Correlation analysis of pedicel traits of 99 Oncidium germplasm resources based on BLUP values[J]. Molecular Plant Breeding,2024,22(23):7827‑7836.[25]邓丽,李绍伟,郭敏杰,等. 基于BLUP和GGE双标图的大果型花生丰产稳产适应性分析[J].种子,2023,42(7):117‑121. DENG L,LI S W,GUO M J,et al. High yield,stability and adaptability of big‑fruit type peanut based on BLUP and GGE biplot[J]. Seed,2023,42(7):117‑121.[26]王润辉,胡德活,韦如萍,等. 基于BLUP育种值与GGE 双标图分析杉木第三代全同胞家系生长性状的适生性[J]. 亚热带植物科学,2023,52(1):43‑49. WANG R H,HU D H,WEI R P,et al. Adaptability analysis of third generation full‑sib Chinese fir families based on BLUP breeding value and GGE biplot methods[J]. Subtropical Plant Science,2023,52(1):43‑49.[27]郑聪慧,张鸿景,王玉忠,等. 基于BLUP和GGE双标图的华北落叶松家系区域试验分析[J]. 林业科学,2019,55(8):73‑83. ZHENG C H,ZHANG H J,WANG Y Z,et al. An analysis of a regional trial of Larix principis‑rupprechtii families based on BLUP and GGE biplot[J]. Scientia Silvae Sinicae,2019,55(8):73‑83.[28]苗建利,邓丽,郭敏杰,等. 基于BLUP和GGE双标图的全国北方片花生区域试验分析[J]. 分子植物育种,2024,22(3):832‑839. MIAO J L,DENG L,GUO M J,et al. Regional test analysis of peanut in north of China based on BLUP and GGE biplo[t J]. Molecular Plant Breeding,2024,22 (3):832‑839. [29]谭家壮,冯恩友,吴小丽,等. 基于GGE和BLUP双标图的南方花生品种联合试验研究[J]. 种子科技,2024,42(19):25‑27. TAN J Z,FENG E Y,WU X L,et al. Study on joint experiment of southern peanut varieties based on GGE and BLUP double plot [J]. Seed Science &Technology,2024,42(19):25‑27.[30]任丽,郭敏杰,苗建利,等. 基于BLUP和GGE双标图的高油酸花生品种综合分析[J]. 分子植物育种,2024,22(5):1568‑1574. REN L,GUO M J,MIAO J L,et al. Comprehensive analysis of peanut variety with high oleic acid based on BLUP value and GGE‑biplot[J]. Molecular Plant Breeding,2024,22(5):1568‑1574. [31]肖继兵,刘志,孔凡信,等. 基于GGE双标图的高粱品种农艺性状和稳产性分析[J].作物杂志,2023(2):36‑45. XIAO J B,LIU Z,KONG F X,et al. Analysis of agronomic traits and yield stability of Sorghum varieties based on GGE biplot[J]. Crops,2023(2):36‑45. [32]崔同霞,张保军,姚友旭,等. 基于GGE双标图法的甘肃省西片区域春小麦新品种的丰产性及适应性评价[J].甘肃农业大学学报,2022,57(3):58‑65. CUI T X,ZHANG B J,YAO Y X,et al. Evaluation of fertility and adaptability of new spring wheat varieties in western Gansu Province using GGE biplot[J].Journal of Gansu Agricultural University,2022,57(3):58‑65. [33]吕增帅,肖陈燕,王鹏,等. 基于AMMI模型和GGE双标图在油葵区试中的应用[J]. 西北农业学报,2024,33(11):2048‑2058. LÜ Z S,XIAO C Y,WANG P,et al. Application of AMMI model and GGE biplot in oil sunflower region trials[J].Acta Agriculturae Boreali‑Occidentalis Sinica,2024,33(11):2048‑2058. [34] 王淑君,邢璐,刘俊芳,等. DTOPSIS和灰色局势决策法在谷子综合评价中的应用[J]. 江苏农业科学,2024,52(24):66‑72. WANG S J,XING L,LIU J F,et al. Application of DTOPSIS and grey situation decision method in foxtail millet comprehensive evaluation [J]. Jiangsu Agricultural Sciences,2024,52(24):66‑72.[35]岳海旺,卜俊周,魏建伟,等. AMMI模型与BLUP方法相结合评价河北省冬小麦品种丰产性和稳定性[J]. 中国农业大学学报,2024,29(8):50‑61. YUE H W,BU J Z,WEI J W,et al. High yield and stability evaluation of winter wheat varieties in Hebei Province by combining AMMI model and BLUP method[J].Journal of China Agricultural University,2024,29(8):50‑61. [36]张群远,孔繁玲,杨付新. 作物品种区域试验中品种均值估计的模型和方法:算术平均值、加权最小二乘估值和BLUP 的比较[J]. 作物学报,2003,29(6):884‑891. ZHANG Q Y,KONG F L,YANG F X. Models and methods for estimating variety means in regional crop trials:Comparisons of arithmetic mean,weighted least squares estimates and BLUPs[J]. Acta Agronomica Sinica,2003,29(6):884‑891. [37]邓丽,任丽,郭敏杰,等. 基于BLUP和GGE双标图的花生产量基因型与环境互作效应分析[J]. 种子,2024,43(7):91‑96. DENG L,REN L,GUO M J,et al. Analysis of the interaction effect between peanut yield genotypes and environment based on BLUP and GGE biplot[J]. Seed,2024,43(7):91‑96.[38] 严威凯. 双标图分析在农作物品种多点试验中的应用[J]. 作物学报,2010,36(11):1805‑1819. YAN W K. Optimal use of biplots in analysis of multi‑location variety test data[J].Acta Agronomica Sinica,2010,36(11):1805‑1819. [39]王楚彪,熊涛,张磊,等. 桉树无性系生长性状基因型与环境互作效应及优良无性系选择[J].浙江农林大学学报,2023,40(5):951‑960. WANG C B,XIONG T,ZHANG L,et al. Genotype×environment interaction on growth traits of Eucalyptus clones and selection of elite clones[J].Journal of Zhejiang A & F University,2023,40(5):951‑960. |
[1] | 张爱琴, 郭斌, 柳利龙, 李旭华, 王青, 徐瑞, 张环. 基于主成分分析和隶属函数法的谷子营养品质综合评价[J]. 河南农业科学, 2025, 54(1): 28-39. |
[2] | 蒋国飞, 王旭琴, 张玲源, 白玉涛, 张平, 刘俊娜, 李莉, 李寒雪, 覃鹏. 滇麦7 号和滇麦12 号适应性评价及成株期抗条锈病基因检测[J]. 河南农业科学, 2025, 54(1): 9-20. |
[3] | 闫锋, 董扬, 赵富阳, 侯晓敏, 李清泉, 王立达, 李青超, 刘洋, 张磊, 刘凯. 谷子品种光合性能综合评价及高光效品种筛选[J]. 河南农业科学, 2024, 53(5): 40-48. |
[4] | 李君霞, 马小倩, 代书桃, 秦娜, 宋迎辉, 朱灿灿, 刘海霞, 金松灿. 谷子品质性状研究进展[J]. 河南农业科学, 2023, 52(9): 14-23. |
[5] | 张红涛, 罗一铭, 谭联, 杨加蓬, 王宇. 基于迁移学习和残差网络的谷子病害识别研究[J]. 河南农业科学, 2023, 52(12): 162-171. |
[6] | 朱灿灿, 付森杰, 秦娜, 王春义, 代书桃, 宋迎辉, 魏昕, 李君霞. 磷肥施用深度对谷子根系分布、氮素吸收利用和产量的影响[J]. 河南农业科学, 2023, 52(12): 22-30. |
[7] | 罗世武, 李凯, 来幸樑, 程炳文. 不同种类地膜覆盖对土壤水温、谷子生长及产量的影响[J]. 河南农业科学, 2022, 51(7): 42-50. |
[8] | 冯链, 田翔, 乔治军, 王海岗. 谷子农艺性状与蛋白质含量相关性分析[J]. 河南农业科学, 2022, 51(6): 43-53. |
[9] | 张冰冰, 叶艳英, 金水凤, 罗稳根, 周劲松, 尹玉玲, 罗绍春, 汤泳萍. 基于灰色关联度分析和DTOPSIS 法的芦笋种质资源综合评价[J]. 河南农业科学, 2022, 51(5): 96-107. |
[10] | 刘光宇, 徐晓静, 夏科科, 孙海汐, 陶月如, 崔震, 顾颖. 基于原生质体的谷子CRISPR/Cas9 基因编辑系统优化[J]. 河南农业科学, 2022, 51(1): 34-42. |
[11] | 李君霞, 樊永强, 代书桃, 朱灿灿, 韩燕丽, 秦娜, 王彦辉, 宋迎辉. 播期对不同谷子品种干物质积累、转运和产量的影响[J]. 河南农业科学, 2021, 50(7): 39-47. |
[12] | 相吉山, 张恒儒, 于佳东, 索良喜, 郭普丞, 李岩, 韩奕, 杜鹤恬, 马静泽, 陈佳宁. 495个不同产区谷子品种(系)在赤峰地区的农艺性状分析[J]. 河南农业科学, 2020, 49(8): 16-30. |
[13] | 李君霞, 代书桃, 陈宇翔, 朱灿灿, 秦娜, 宋迎辉, 王春义, 芮战许, 梁秋芳. 种植密度对夏谷顶三叶和穗部性状的影响[J]. 河南农业科学, 2020, 49(7): 25-34. |
[14] | 李任建, 申哲源, 李旭凯, 韩渊怀, 张宝俊. 谷子NBS-LRR类基因家族全基因组鉴定及表达分析[J]. 河南农业科学, 2020, 49(2): 34-43. |
[15] | 秦 娜,马春业,朱灿灿,代书桃,宋迎辉,王春义,芮战许,李君霞. 谷子氮高效基因型筛选及相关特性分析[J]. 河南农业科学, 2019, 48(5): 22-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||