Journal of Henan Agricultural Sciences ›› 2025, Vol. 54 ›› Issue (6): 11-20.DOI: 10.15933/j.cnki.1004-3268.2025.06.002
• Crop Cultivation & Genetic Breeding • Previous Articles Next Articles
LONG Wei1,2,WANG Liang1,2,JIN Yukun2,LIU Jiayao2,WEI Zunmiao2,CHENG Yan2,MU Zhongsheng2
Received:
2023-12-14
Accepted:
2024-01-04
Published:
2025-06-15
Online:
2025-06-24
龙威1,2,王靓1,2,金羽琨2,刘佳遥2,魏尊苗2,程艳2,牟忠生2
通讯作者:
牟忠生(1978-),男,吉林农安人,研究员,硕士,主要从事油莎豆遗传育种工作。E-mail:muzs@163.com
作者简介:
龙威(1998-),男,四川泸州人,在读硕士研究生,研究方向:油莎豆遗传育种。E-mail:1614430173@qq.com
基金资助:
CLC Number:
LONG Wei, WANG Liang, JIN Yukun, LIU Jiayao, WEI Zunmiao, CHENG Yan, MU Zhongsheng. Physiological Characteristics and Transcriptomic Analysis of Cyperus esculentus L.at Seedling Stage under Salt Stress[J]. Journal of Henan Agricultural Sciences, 2025, 54(6): 11-20.
龙威, 王靓, 金羽琨, 刘佳遥, 魏尊苗, 程艳, 牟忠生. 苗期油莎豆在盐胁迫下的生理特性及转录组学分析[J]. 河南农业科学, 2025, 54(6): 11-20.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnnykx.org.cn/EN/10.15933/j.cnki.1004-3268.2025.06.002
[1]李佳婷. 油莎豆的组织培养及多倍体诱导[D]. 广州:仲恺农业工程学院,2019. LI J T. Tissue culture and polyploid induction of yellow nut‐sedge(Cyperus esculentus L.)[D].Guangzhou:Zhongkai University of Agriculture and Engineering,2019. [2]魏尊苗,刘佳遥,程艳,等.秋水仙素诱变对油莎豆出苗率及品质的影响[J].河南农业科学,2022,51(11):50‐55. WEI Z M,LIU J Y,CHENG Y,et al. Effect of colchicine mutagenesis on emergence rate and quality of tigernut (Cyperus esculentus L.)[J].Journal of Henan Agricultural Sciences,2022,51(11):50‐55. [3]黄明华,王学华,庞震宇. 油莎豆的研究现状及展望[J].作物研究,2013,27(3):293‐295. HUANG M H,WANG X H,PANG Z Y. Research status and prospect of Cyperus esculentus L[J].Crop Research,2013,27(3):293‐295. [4]ARAFAT S,GAAFAR A,BASUNY A M M,et al. Chufa tubers(Cyperus esculentus L.):As a new source of food[J].World Applied Sciences Journal,2009,7:151‐156. [5]OZCAN M M,GUMUSCU A,ER F,et al. Chemical and fatty acid composition of Cyperus esculentus[J].Chemistry of Natural Compounds,2010,46(2):276‐277. [6]史先飞,高宇,黄旭升,等. 油莎豆CeWRKY转录因子响应非生物胁迫的功能表征[J].草业学报,2023,32(8):186‐201. SHI X F,GAO Y,HUANG X S,et al.Functional characterization of Cyperus esculentus CeWRKY transcription factors in response to abiotic stress[J].Acta Prataculturae Sinica,2023,32(8):186‐201. [7]QUAN R D,LIN H X,MENDOZA I,et al. SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J].The Plant Cell,2007,19(4):1415‐1431. [8]GONG Z Z. Plant abiotic stress:New insights into the factors that activate and modulate plant responses[J].Journal of Integrative Plant Biology,2021,63(3):429‐430. [9]ZHU J K. Salt and drought stress signal transduction in plants[J].Annual Review of Plant Biology,2002,53:247‐273. [10]陈俊.碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点[D].长春:东北师范大学,2006:4‐10. CHEN J. Physiological responses of antioxidant enzyme system to alkali‐saline mixed stress in the seedlings of Kochia sieversiana[D].Changchun:Northeast Normal University,2006:4‐10. [11]岩学斌,袁金海. 盐胁迫对植物生长的影响[J].安徽农业科学,2019,47(4):30‐33. YAN X B,YUAN J H. Effects of salt stress on plant growth[J]. Journal of Anhui Agricultural Sciences,2019,47(4):30‐33. [12]薛斌龙,李丕全,张闰璇,等. 石墨烯溶胶对树莓组培苗苗期生理生化的影响[J].河南林业科技,2020,40(4):11‐15. XUE B L,LI P Q,ZHANG R X,et al. Effects of graphene Sol on physiology and biochemistry of Rubus corchorifolius tissue culture seedlings at seedling stage[J].Journal of Henan Forestry Science and Technology,2020,40(4):11‐15. [13]SREENIVASULU N,RAMANJULU S,RAMACHANDRAKINI K,et al.Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox‐tail millet with differential salt tolerance[J].Plant Science,1999,141(1):1‐9. [14]TANG W,NEWTON R J. Polyamines reduce salt‐induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine[J].Plant Growth Regulation,2005,46(1):31‐43. [15]KOHLER J,HERNÁNDEZ J A,CARAVACA F,et al.Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress[J].Environmental and Experimental Botany,2009,65(2/3):245‐252. [16]李焕勇,杨秀艳,唐晓倩,等. 植物响应盐胁迫组学研究进展[J].西北植物学报,2016,36(12):2548‐2557. LI H Y,YANG X Y,TANG X Q,et al. Omics research progress of plants under salt stress[J].Acta Botanica Boreali‐Occidentalia Sinica,2016,36(12):2548‐2557.[17]阮航,多浩源,范文艳,等.AtERF49在拟南芥应答盐碱胁迫中的作用[J].生物技术通报,2023,39(1):150‐156. RUAN H,DUO H Y,FAN W Y,et al. Role of the AtERF49 in the responses to salt‐alkali stress in Arabidopsis[J].Biotechnology Bulletin,2023,39(1):150‐156. [18]陆程张.Na2CO3胁迫下玉米苗期根部转录组表达谱分析[D].延边:延边大学,2021. LU C Z.Analysis of transcriptome expression profile of maize seedling roots under Na2CO3 stress[D].Yanbian:Yanbian University,2021. [19]王会伟,张向歌,李春鑫,等. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J].作物学报,2023,49(7):1882‐1894. WANG H W,ZHANG X G,LI C X,et al. Evaluation of salt tolerance in Cyperus esculentus and transcriptomic analysis of seedling roots under salt stress[J]. Acta Agronomica Sinica,2023,49(7):1882‐1894. [20]马广民.水杨酸对盐胁迫下苦瓜种子萌发及幼苗生长的影响[J].中国瓜菜,2024,37(2):100‐105. MA G M.Effects of salicylic acid on seed germination and seedling growth of bitter gourd under salt stress[J].China Cucurbits and Vegetables,2024,37(2):100‐105. [21]赵琦琦,张斌,郭玉静,等.不同油莎豆种质资源苗期耐盐性鉴定评价[J]. 山东农业科学,2022,54(9):14‐21. ZHAO Q Q,ZHANG B,GUO Y J,et al. Identification and evaluation of salt tolerance of different Cyperus esculentus germplasm resources at seedling stage[J].Shandong Agricultural Sciences,2022,54(9):14‐21. [22]刘佳遥,程艳,魏尊苗,等. 外源激素对干旱胁迫下油莎豆生长、产量及生理特性的影响[J].河南农业科学,2022,51(11):42‐49. LIU J Y,CHENG Y,WEI Z M,et al. Effects of exogenous hormones on growth,yield and physiological characteristics of tigernut(Cyperus esculentus L.)under drought stress[J]. Journal of Henan AgriculturalSciences,2022,51(11):42‐49. [23]李合生. 植物生理生化试验原理和技术[M]. 北京:高等教育出版社,2000. LI H S. Principles and techniques of plant physiological and biochemical experiment[M].Beijing:Higher Education Press,2000.[24]张志良,瞿伟菁. 植物生理学实验指导[M].3版. 北京:高等教育出版社,2003. ZHANG Z. L,ZHAI W J. Experimental instruction in plant physiology[M]. 3rd ed. Beijing:Higher Education Press,2003.[25]高俊凤. 植物生理学实验指导[M].北京:高等教育出版社,2006. GAO J F. Experimental supervision of plant physiology[M].Beijing:Higher Education Press,2006. [26]BUCHFINK B,XIE C,HUSON D H. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods,2015,12(1):59‐60. [27]KANEHISA M,GOTO S,KAWASHIMA S,et al.The KEGG resource for deciphering the genome[J].Nucleic Acids Research,2004,32:D277‐D280. [28]XIE C,MAO X Z,HUANG J J,et al. KOBAS 2.0:A web server for annotation and identification of enriched pathways and diseases[J].Nucleic Acids Research,2011,39:W316‐W322. [29]JONES P,BINNS D,CHANG H Y,et al. InterProScan 5:Genome‐scale protein function classification[J].Bioinformatics,2014,30(9):1236‐1240. [30]ASHBURNER M,BALL C A,BLAKE J A,et al.Gene ontology:Tool for the unification of biology.The Gene Ontology Consortium[J].Nature Genetics,2000,25 (1):25‐29. [31]EDDY S R. Profile hidden Markov models[J].Bioinformatics,1998,14(9):755‐763. [32]FINN R D,BATEMAN A,CLEMENTS J,et al. Pfam:The protein families database[J].Nucleic Acids Research,2014,42:D222‐D230. [33]MU Z S,WEI Z M,LIU J Y,et al. Rna‐Seq analysis demonstrates different strategies employed by tiger nuts(Cyperus esculentus L. )in response to drought stress[J].Life,2022,12(7):1051. [34]SCHMITTGEN T D,LIVAK K J.Analyzing real‐time PCR data by the comparative CT method[J].Nature Protocols,2008,3:1101‐1108. [35]吴孚桂,刘慧芳,聂佳俊,等. 水稻幼穗响应盐胁迫的转录组分析[J].热带作物学报,2021,42(5):1274‐1281. WU F G,LIU H F,NIE J J,et al. Transcriptome analysis of young spikes in rice under salt stress[J].Chinese Journal of Tropical Crops,2021,42(5):1274‐1281.[36]孙璐,周宇飞,李丰先,等.盐胁迫对高粱幼苗光合作用和荧光特性的影响[J].中国农业科学,2012,45(16):3265‐3272. SUN L,ZHOU Y F,LI F X,et al.Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of Sorghum seedlings[J].Scientia Agricultura Sinica,2012,45(16):3265‐3272.[37]孔德真,段震宇,王刚等,盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J].生物技术通报,2023,39(6):199‐207. KONG D Z,DUAN Z Y,WANG G,et al. Physiological characteristics and transcriptome analysis of Sorghum bicolor×S.sudanense seedlings under salt‐alkali stress[J].Biotechnology Bulletin,2023,39(6):199‐207. [38]高彩婷,刘景辉,徐寿军,等. 燕麦盐胁迫响应基因的差异表达与生理响应的关系[J]. 西北植物学报,2015,35(7):1385‐1393. GAO C T,LIU J H,XU S J,et al. Exploring the relationship of differentially expressed genes and physiological of oats in response to salt stress[J].Acta Botanica Boreali‐Occidentalia Sinica,2015,35(7):1385‐1393. [39]孙瑞芬,张艳芳,郭树春,等. 基于RNA-Seq技术的盐胁迫向日葵转录组信息分析[J].分子植物育种,2015,13(12):2736‐2742. SUN R F,ZHANG Y F,GUO S C,et al.Analysis on transcriptome of sunflower under salt stress based on RNA‐seq technology[J]. Molecular Plant Breeding,2015,13(12):2736‐2742.[40]魏嘉,于志晶,钱雪艳,等. 野生大豆响应盐碱胁迫转录组分析[J/OL].分子植物育种,2023[2023‐12‐14].http://kns.cnki.net/kcms/detail/46.1068.S.20231031.0854.004.html. WEI J,YU Z J,QIAN X Y,et al.Transcriptome analysis of Glycine soja in response to Na2CO3 stress[J/OL]. Molecular Plant Breeding,2023[2023‐12‐14].http://kns.cnki.net/kcms/detail/46.1068.S.20231031.0854.004.html. [41]张飞,王艳秋,朱凯,等.不同耐盐性高粱在盐逆境下的比较转录组分析[J].中国农业科学,2019,52(22):4002‐4015. ZHANG F,WANG Y Q,ZHU K,et al.Comparative transcriptome analysis of different salt tolerance Sorghum(Sorghum bicolor L. moench)under salt stress[J].Scientia Agricultura Sinica,2019,52(22):4002‐4015. [42]胡金鹏,潘雅清,张亚琪,等.蒙古岩黄芪响应盐胁迫转录组学分析[J]. 分子植物育种,2021,19(23):7758‐7770. HU J P,PAN Y Q,ZHANG Y Q,et al.Transcriptome analysis of Hedysarum mongolicum in response to salt stress[J].Molecular Plant Breeding,2021,19(23):7758‐7770. [43]吉福桑,李元元,唐露,等.香蕉叶片响应盐胁迫转录组分析[J].分子植物育种,2017,15(3):875‐882. JI F S,LI Y Y,TANG L,et al.Analysis of banana leaves responses salt stress of transcriptome[J].Molecular Plant Breeding,2017,15(3):875‐882.[44]范娜,彭之东,白文斌. 盐敏感型与耐盐型高粱对盐胁迫反应的转录组差异分析[J].植物营养与肥料学报,2022,28(11):2130‐2142. FAN N,PENG Z D,BAI W B. Analysis of transcriptome differences of salt‐sensitive and salt‐tolerant Sorghum under salt stress[J]. Journal of Plant Nutrition and Fertilizers,2022,28(11) :2130‐2142. [45]巴图.NaCl胁迫下大麦幼苗的生理响应与根系转录组测序分析[D].呼和浩特:内蒙古农业大学,2022. BA T.Physiological response and transcriptome sequencing analysis of barley seedlings under NaCl stress[D].Hohhot:Inner Mongolia Agricultural University,2022.[46]董明,再吐尼古丽·库尔班,吕芃,等.高粱苗期耐盐性转录组分析和基因挖掘[J].中国农业科学,2019,52(22):3987‐4001. DONG M,KUERBAN Z,LÜ P,et al.Transcriptome analysis and gene mining of salt tolerance in sorghum seedlings(Sorghum bicolor L. Moench)[J].Scientia Agricultura Sinica,2019,52(22):3987‐4001. |
[1] | TIAN Ye, YANG Peihua, YANG Tingqian, LIU Xiaocen, LIU Yiqing, WANG Jiao, HU Haijun, JIANG Xinchen, ZHANG Wanshun, ZHU Yongxing. Effect of Exogenous Nano‐Silicon on Seed Germination of Pepper under Salt Stress [J]. Journal of Henan Agricultural Sciences, 2025, 54(6): 110-120. |
[2] | MA Li, GUO Xueliang, YAO Hongyu, LIU Haobin, XING Xiaolong, ZHU Chunhua, QI Hongzhi, LI Xianwei, YU Dongdong, ZHANG Li, LI Chengwei, PEI Dongli, WANG Fang. Isolation and Identification of Antagonistic Endophytic Bacteria against Strawberry Gray Mold and Their Antibacterial Effects [J]. Journal of Henan Agricultural Sciences, 2025, 54(6): 100-109. |
[3] | ZOU Quan, XING Weiming, WANG Ruoding, ZHOU Wenjun. Effects of Root Application of AMF and SL on Chlorophyll Fluorescence and Antioxidant System of Lolium perenne under Saline Alkali Stress [J]. Journal of Henan Agricultural Sciences, 2025, 54(6): 72-83. |
[4] | CHEN Chun, ZHONG Chunbin, LU Lei. Identification of WOX Family Members in Salvia miltiorrhiza and Functional Analysis of SmWOX8 Gene under Salt Stress [J]. Journal of Henan Agricultural Sciences, 2025, 54(6): 43-54. |
[5] | DING Qihuan, DENG Min, SHI Dekang, SU Jianmei, GU Chonglin, LI Sijin. Analysis of Yunnan Black Tea Aroma Characteristics Based on HS‐SPME‐GC‐MS and OAV [J]. Journal of Henan Agricultural Sciences, 2025, 54(4): 167-180. |
[6] | ZHANG Yifan, LIU Xiaoyan, WAN Zhongyi, FANG Wei, ZHU Lei, CHEN Ling, CAI Jun, ZHOU Ronghua, WANG Changgao, MIN Yong. Effect of Heterologous Expression of the vgb Gene Mediated by Different Promoters on Novonestmycin Production [J]. Journal of Henan Agricultural Sciences, 2025, 54(4): 91-100. |
[7] | PENG Bo, MA Mengmei, ZHAO Ping. Identification of the WOX Gene Family in Paeonia lactiflora Based on Transcriptome Data and Functional Analysis of PlWOX5 Under Salt Stress [J]. Journal of Henan Agricultural Sciences, 2025, 54(4): 57-65. |
[8] | WANG Rongrong, YUE Hewei, ZHANG Bo, HU Peng, LIU Yang, YANG Xue, LI Juan, LI Lianzhen. Effects of 6⁃BA on Physiological Characteristics of Primary Rhizomes of Polygonatum sibiricum Red. [J]. Journal of Henan Agricultural Sciences, 2025, 54(3): 60-70. |
[9] | DENG Cong, MA Lu, WANG Qingsong, FU Jian, WANG Yufeng, YANG Kejun. Effect of Bacillus on Seed Germination and Physiological and Biochemical Characteristics of Maize under Salt⁃Alkali Stress [J]. Journal of Henan Agricultural Sciences, 2025, 54(3): 20-30. |
[10] | YAN Zhengfei, YANG Minglong, TANG Xiujuan, XIA Yonghua, YANG Zhen, LI Wantao. Inversion of Soil Organic Carbon Content in the Central Yunnan Plateau Based on Sentinel⁃2A Images and XGBoost Model [J]. Journal of Henan Agricultural Sciences, 2025, 54(2): 145-153. |
[11] | HE Miao, JIANG Yuanhao, MIN Haozhe, LIN Tao, WANG Duo, XUAN Zhengying. Differences in Physiological Responses of Different Drought⁃tolerant Turnip Seedlings to Drought Stress and Rehydration [J]. Journal of Henan Agricultural Sciences, 2025, 54(2): 116-123. |
[12] | LIU Jiaqi, ZOU Yiping, YIN Yawen, HAO Mingzhuo. Effects of Different Plant Growth Regulators on the Fruit Quality of Ilex verticillata [J]. Journal of Henan Agricultural Sciences, 2025, 54(1): 128-135. |
[13] | SUN Yahui, ZHENG Zhongbing, ZI Nanhua, SHEN Sihan, CHEN Ping. Effects of Different Soil Amendments on Yield and Quality of Mango Fruit [J]. Journal of Henan Agricultural Sciences, 2024, 53(8): 118-125. |
[14] | GUO Xiaoyang, LA Guixiao, XU Xinran, YU Yange, DAI Dandan, LI Yanpeng, WANG Yanhong, GUO Hongxia, YANG Tiegang. Metabolites Mining and Path Enrichment Analysis of Tigernut Tuber Formation [J]. Journal of Henan Agricultural Sciences, 2024, 53(8): 30-43. |
[15] | GUO Jianing, LI Nannan, LI Kun. Research Progress in Alleviating Continuous Cropping Obstacles by Allium L.Plants [J]. Journal of Henan Agricultural Sciences, 2024, 53(8): 11-20. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||