[1]MAZDIYASNI O,AGHAKOUCHAK A. Substantial increase in concurrent droughts and heatwaves in the United States[J]. PNAS,2015,112(37):11484‐11489.
[2]LEHMANN J,RILLIG M. Distinguishing variability from uncertainty [J]. Nature Climate Change, 2014, 4(3):153.
[3]ZANDALINAS S I,FRITSCHI F B,MITTLER R. Global warming,climate change,and environmental pollution:Recipe for a multifactorial stress combination disaster[J]. Trends in Plant Science,2021,26(6):588‐599.
[4]RAY D K,GERBER J S,MACDONALD G K,et al.Climate variation explains a third of global crop yield variability[J]. Nature Communications,2015,6:5989.
[5]YANG Z R,CAO Y B,SHI Y T,et al. Genetic and molecular exploration of maize environmental stress resilience:Toward sustainable agriculture[J]. Molecular Plant,2023,16(10):1496‐1517.
[6]RODRIGUES J, INZÉ D, NELISSEN H, et al.Source‐sink regulation in crops under water deficit[J].Trends in Plant Science,2019,24(7):652‐663.
[7]BAILEY‐SERRES J,PARKER J E,AINSWORTH E A,et al. Genetic strategies for improving crop yields[J].Nature,2019,575(7781):109‐118.
[8]GUPTA A,RICO‐MEDINA A,CAÑO‐DELGADO A I.The physiology of plant responses to drought[J].Science,2020,368(6488):266‐269.
[9]GODFRAY H C J,BEDDINGTON J R,CRUTE I R,et al. Food security:The challenge of feeding 9 billion people[J]. Science,2010,327(5967):812‐818.
[10]SIMPKINS G. Maize sensitivity to drought[J]. Nature Reviews Earth & Environment,2020,1(12):625.
[11]DARYANTO S,WANG L X,JACINTHE P A. Global synthesis of drought effects on maize and wheat production[J]. PLoS One,2016,11(5):e0156362.
[12]LOBELL D B,DEINES J M,DI TOMMASO S. Changes in the drought sensitivity of US maize yields[J].Nature Food,2020,1(11):729‐735.
[13]冯新雨,刘旭洋,唐怀君,等. 玉米苗期抗旱lncRNA基因的挖掘[J]. 植物遗传资源学报,2025,26(10):2049‐2063.
FENG X Y,LIU X Y,TANG H J,et al. Identification of drought resistant associated lncRNA genes in maize seedlings[J].Journal of Plant Genetic Resources,2025,26(10):2049‐2063.
[14]马俊峰,马毅,魏锋,等. 高产优质耐密宜机收玉米新品种新单58的选育[J]. 河南农业科学,2020,49(9):27‐32.
MA J F,MA Y,WEI F,et al. Breeding of new maize variety Xindan 58 with characteristics of high yield,good quality,high density tolerance and easy to mechanical harvest[J]. Journal of Henan Agricultural Sciences,2020,49(9):27‐32.
[15]洪德峰,张学舜,马毅,等. 优良玉米自交系新01A3及其改良系选育与应用[J]. 玉米科学,2021,29(1):15‐19.
HONG D F,ZHANG X S,MA Y,et al. Breeding analysis and utilization of inbred lines Xin01A3 and its improved lines[J]. Journal of Maize Sciences,2021,29(1):15‐19.
[16]SKILLMAN J B. Quantum yield variation across the three pathways of photosynthesis:Not yet out of the dark[J]. Journal of Experimental Botany,2008,59(7):1647‐1661.
[17]GRIFFITHS‐JONES S. miRBase:The miRNA sequence database[J]. Methods in Molecular Biology,2006,342:129‐138.
[18]ROMUALDI C,BORTOLUZZI S,D’ALESSI F,et al.IDEG6 a web tool for detection of differentially expressed genes in multiple tag sampling experiments[J]. Physiological Genomics,2003,12(2):159‐162.
[19]KANG Y C,YANG X Y,LIU Y H,et al. Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato(Solanum tuberosum L.)response to alkali stress[J]. International Journal of Biological Macromolecules,2021,182:938‐949.
[20]BARTEL D P. microRNAs:Genomics,biogenesis,mechanism,and function[J]. Cell,2004,116(2):281‐297.
[21]VOINNET O. Origin,biogenesis,and activity of plant microRNAs[J]. Cell,2009,136(4):669‐687.
[22]GAO P,BAI X,YANG L,et al. Over‐expression of Osa‐MIR396c decreases salt and alkali stress tolerance[J]. Planta,2010,231(5):991‐1001.
[23]BAEK D,CHUN H J,KANG S,et al. A role for Arabidopsis miR399f in salt,drought,and ABA signaling[J].Molecules and Cells,2016,39(2):111‐118.
[24]QIAO Q H,WANG X Y,YANG M Y,et al. Wheat miRNA member TaMIR2275 involves plant nitrogen starvation adaptation via enhancement of the N acquisition‐associated process[J].Acta Physiologiae Plantarum,2018,40(10):183.
[25]ZHU C,DING Y F,LIU H L. MiR398 and plant stress responses[J]. Physiologia Plantarum,2011,143(1):1‐9.
[26]FERDOUS J,WHITFORD R,NGUYEN M,et al.Drought‐inducible expression of Hv‐miR827 enhances drought tolerance in transgenic barley[J]. Functional & Integrative Genomics,2017,17(2):279‐292.
[27]CAO C Y,LONG R C,ZHANG T J,et al. Genome‐wide identification of microRNAs in response to salt/alkali stress in Medicago truncatula through high‐throughput sequencing[J]. International Journal of Molecular Sciences,2018,19(12):4076.
[28]YANG X Y,KANG Y C,LIU Y H,et al. Integrated analysis of miRNA‐mRNA regulatory networks of potato(Solanum tuberosum L.)in response to cadmium stress[J]. Ecotoxicology and Environmental Safety,2021,224:112682.
[29]FU Y, MASON A S, ZHANG Y F, et al.microRNA‐mRNA expression profiles and their potential role in cadmium stress response in Brassica napus[J]. BMC Plant Biology,2019,19(1):570.
[30]段娅敏,王后苗,杨泽峰,等. 基于转录组解析玉米苗期根系对非生物胁迫的响应[J]. 江苏农业学报,2025,41(5):848‐857.
DUAN Y M,WANG H M,YANG Z F,et al.Transcriptome‐based analysis of the response of maize root to abiotic stress at seedling stage[J]. Jiangsu Journal of Agricultural Sciences,2025,41(5) :848‐857.
[31]邵盘霞,赵准,邵武奎,等. 玉米ZmCDPK22基因在干旱胁迫下的表达分析[J]. 新疆农业科学,2023,60(6):1372‐1378.
SHAO P X,ZHAO Z,SHAO W K,et al. Expression analysis of ZmCDPK22 gene in maize under drought stress[J]. Xinjiang Agricultural Sciences,2023,60(6):1372‐1378.
[32]张前进,曹丽茹,马晨晨,等. 玉米ZmLEA34基因的分子特性、克隆和响应干旱胁迫的表达分析[J].山东农业大学学报(自然科学版),2022,53(5):665‐672.
ZHANG Q J,CAO L R,MA C C,et al. Molecular characteristics,cloning and expression analysis of ZmLEA34 gene in maize in response to drought stress[J]. Journal of Shandong Agricultural University(Natural Science Edition),2022,53(5):665‐672.
[33]毋莹,胡蝶,李婷,等. 玉米WRKY转录因子Ⅱc亚家族分析及其在干旱胁迫下的表达分析[J]. 作物杂志,2024(1):80‐89.
WU Y,HU D,LI T,et al. Analysis of WRKY transcription factor Ⅱ c subfamily in maize and its expression profile under drought[J]. Crops,2024(1):80‐89.
|