[1]霍治国,张海燕,李春晖,等. 中国玉米高温热害研究进展[J]. 应用气象学报,2023,34(1):1‐14.
HUO Z G,ZHANG H Y,LI C H,et al. Review on high temperature heat damage of maize in China[J].Journal of Applied Meteorological Science,2023,34(1):1‐14.
[2]宋英博. 气象灾害对我国玉米安全生产的影响及对策[J].作物研究,2022,36(1):80‐83.
SONG Y B.Influence of meteorological disasters on safe production of maize in China and its countermeasures[J].Crop Research,2022,36(1):80‐83.
[3]孙永江,王琪,邵琪雯,等. 高温胁迫对植物光合作用的影响研究进展[J].植物学报,2023,58(3):486‐498.
SUN Y J,WANG Q,SHAO Q W,et al. Research advances on the effect of high temperature stress on plant photosynthesis[J]. Chinese Bulletin of Botany,2023,58(3):486‐498.
[4]李小凡,邵靖宜,于维帧,等. 高温干旱复合胁迫对夏玉米产量及光合特性的影响[J].中国农业科学,2022,55(18):3516‐3529.
LI X F,SHAO J Y,YU W Z,et al. Combied effects of high temperature and drougt on yield and photosynthetic characteristics of summer maize[J]. Scientia Agricultura Ainica,2022,55(18):3516‐3529.
[5]穆心愿,马智艳,张兰薰,等. 不同耐/感玉米品种的叶片光合荧光特性、授粉结实和产量构成因素对花期高温的反应[J]. 中国生态农业学报(中英文),2022,30 (1):57‐71.
MU X Y,MA Z Y,ZHANG L X,et al. Responses of photosynthetic fluorescence characteristics,pollination,and yield components of maize cultivars to high temperature during flowering[J]. Chinese Journal of Eco‐Agriculture,2022,30(1):57‐71.
[6]孙武,韩淑华,刘建民,等. 不同玉米品种在小穗分化期和抽雄期对高温胁迫的响应差异[J]. 中国农学通报,2019,35(17):12‐19.
SUN W,HAN S H,LIU J M,et al. Response of maize cultivars to high temperature stress at spikelet differentiation stage and tasseling stage[J]. Chinese Agricultural Science Bulletin,2019,35(17):12‐19.
[7]吴伟华,柳家友,袁刘正,等. 花期高温对不同玉米品种主要农艺形状和产量的影响[J]. 安徽农业科学,2020,48(6):33‐36.
WU W H,LIU J Y,YUAN L Z,et al. Effects of high temperature at florescence stage on the yield and major agronomic characters of different maize varieties[J].Journal of Anhui Agricultural Sciences,2020,48(6):33‐36.
[8]杨浩,刘晨,王志飞,等. 作物花粉高温应答机制研究进展[J].植物学报,2019,54(2):157‐167.
YANG H,LIU C,WANG Z F,et al. Advances in the regulatory mechanisms of pollen response to heat stress in crops[J]. Chinese Bulletin of Botany,2019,54(2):157‐167.
[9]余梦奇,路梦莉,张雅婷,等. 灌浆期高温对玉米叶片光合特性及抗氧化酶活性的影响[J]. 中国农业气象,
2023,44(7):599‐610.
YU M Q,LU M L,ZHANG Y T,et al. Effects of high temperature on photosynthetic characteristics and antioxidant enzyme activities of maize leaves during filling stage[J]. Chinese Journal of Agrometeorology,2023,44 (7):599‐610.
[10]吴丽倩,王蕊,杨玉荣,等. 高温对玉米叶片衰老及产量的影响[J].华北农学报,2022,37(S1):110‐115.
WU L Q,WANG R,YANG Y R,et al. Effects of high temperature on leaf senescence and yield of maize[J].Acta Agriculturae Boreali‐Sinica,2022,37(S1):110‐115.
[11]王涛,冯敬磊,张翠. 高温胁迫影响玉米生长发育的分子机制研究进展[J].植物学报,2024,59(6):963‐977.
WANG T,FENG J L,ZHANG C. Research progress on molecular mechanisms of heat stress affecting the growth and development of maize[J]. Chinese Bulletin of Botany,2024,59(6):963‐977.
[12]尹军良,马东方,刘乐承,等. 环状RNA的生物特征及其在植物中的研究进展[J].西北植物学报,2017,37(12):2510‐2518.
YIN J L,MA D F,LIU L C,et al. Biology features of circular RNAs and their research progress in plants [J]. Acta Botanica Boreali‐Occidentalia Sinica,2017,37(12):2510‐2518.
[13]周凤燕,杨青,朱熙春,等. 环状RNA的分子特征、作用机制及生物学功能[J]. 农业生物技术学报,2017,25 (3):485‐501.
ZHOU F Y,YANG Q,ZHU X C,et al. Molecular feature,action mechanism and biology function of circular RNA [J]. Journal of Agricultural Biotechnology,2017,25(3):485‐501.
[14]PATOP I L,WÜST S,KADENER S. Past,present,and future of circRNAs[J]. The EMBO Journal,2019,38(16):e100836.
[15]LI Z Y,HUANG C,BAO C,et al. Exon‐intron circular RNAs regulate transcription in the nucleus[J]. Nature Structural & Molecular Biology,2015,22(3):256‐264.
[16]CHEN L L. The biogenesis and emerging roles of circular RNAs[J].Nature Reviews Molecular Cell Biology,2016,17(4):205‐211.
[17]ASHWAL‐FLUSS R,MEYER M,PAMUDURTI N R,et al. circRNA biogenesis competes with pre‐mRNA splicing[J]. Molecular Cell,2014,56(1):55‐66.
[18]EBBESEN K K,KJEMS J,HANSEN T B. Circular RNAs:Identification,biogenesis and function[J].Biochimica et Biophysica Acta (BBA) ‐ Gene Regulatory Mechanisms,2016,1859(1):163‐168.
[19]ZUO J H,WANG Q,ZHU B Z,et al. Deciphering the roles of circRNAs on chilling injury in tomato[J].Biochemical and Biophysical Research Communications,2016,479(2):132‐138.
[20]GAO Z,LI J,LUO M,et al. Characterization and cloning of grape circular RNAs identified the cold resistance‐related Vv‑circATS1[J]. Plant Physiology,2019,180(2):966‐985.
[21]CHENG J P,ZHANG Y,LI Z W,et al. A lariat‐derived circular RNA is required for plant development in Arabidopsis[J]. Science China Life Sciences,2018,61 (2):204‐213.
[22]SONG Y P,BU C H,CHEN P F,et al. Miniature inverted repeat transposable elements cis‐regulate circular RNA expression and promote ethylene biosynthesis,reducing heat tolerance in Populus tomentosa[J].Journal of Experimental Botany,2021,72 (5):1978‐1994.
[23]CHEN L,ZHANG P,FAN Y,et al. Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize[J].New Phytologist,2018,217(3):1292‐1306.
[24]XU J,WANG Q,TANG X,et al. Drought‐induced circular RNAs in maize roots:Separating signal from noise[J]. Plant Physiology,2024,196(1):352‐367.
[25]ZUO J H,WANG Y X,ZHU B Z,et al. Analysis of the coding and non‐coding RNA transcriptomes in response to bell pepper chilling[J]. International Journal of Molecular Sciences,2018,19(7):2001.
[26]HUANG J,WANG Y L,YU J,et al. Evolutionary landscape of tea circular RNAs and its contribution to chilling tolerance of tea plant[J]. International Journal of Molecular Sciences,2023,24(2):1478.
[27] PAN T,SUN X Q,LIU Y X,et al. Heat stress alters genome‐wide profiles of circular RNAs in Arabidopsis[J]. Plant Molecular Biology,2018,96:217‐229.
[28]WANG X S,CHANG X C,JING Y,et al. Identification and functional prediction of soybean circRNAs involved in low‐temperature responses[J]. Journal of Plant Physiology,2020,250:153188.
[29]FANG F,YE S W,TANG J Y,et al. DWT1/DWL2 act together with OsPIP5K1 to regulate plant uniform growth in rice[J]. New Phytologist,2020,225(3):1234‐1246.
[30]HAO C,YANG Y Z,DU J M,et al. The PCY‐SAG14 phytocyanin module regulated by PIFs and miR408 promotes dark‐induced leaf senescence in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(3):e2116623119.
[31]XU Z P, GAO Y H, GAO C X, et al.Glycosylphosphatidylinositol anchor lipid remodeling directs proteins to the plasma membrane and governs cell wall mechanics[J]. The Plant Cell,2022,34(12):4778‐4794.
[32]张敏敏. 植物糖基化磷脂酰肌醇锚定蛋白协助受体激酶转运的机制研究[D]. 上海:华东师范大学,2019.
ZHANG M M. Study on the mechanism of plant glycosylated phosphatidylinositol ankyrin assisting receptor kinase transport[D]. Shanghai:East China Normal University,2019.
[33]杨春霞,胥猛,王明庥,等. 植物中miR160/miR167/miR390家族及其靶基因研究进展[J].南京林业大学学报,2014,38(3):155‐159.
YANG C X,XU M,WANG M X,et al. Advance on miR160/miR167/miR390 family and its target genes in plants[J]. Journal of Nanjing Forestry University,2014,38(3):155‐159.
[34]赵思航,刘昊东,徐渴,等. 小麦中MIR160基因家族的生物信息学分析及靶基因鉴定[J]. 分子植物育种,2023,21(1):27‐35.
ZHAO S H,LIU H D,XU K,et al. Bioinformatics analysis and target gene identification of MIR160 gene family in wheat[J]. Molecular Plant Breeding,2023,21 (1):27‐35.
[35]ŞANL B A,ÖZTÜRK GÖKÇE Z N. Investigating effect of miR160 through overexpression in potato cultivars under single or combination of heat and drought stresses[J]. Plant Biotechnology Reports,2021,15(3):335‐348.
[36]CHUCK G,MARK CIGAN A,SAETEURN K,et al.The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA[J]. Nature Genetics,2007,39(4):544‐549.
[37]王多佳,王政委,任志鹏,等. 冬小麦miR172响应抗寒的特征分析[J]. 麦类作物学报,2023,43(10):1304‐1310.
WANG D J,WANG Z W,REN Z P,et al. Analysis on the characteristics of miR172 responding to cold resistance in winter wheat[J].Journal of Triticeae Crops,2023,43(10):1304‐1310.
[38]ZHANG Y Q,WASEEM M,ZENG Z H,et al.microRNA482/2118,a miRNA superfamily essential for both disease resistance and plant development[J].New Phytologist,2022,233(5):2047‐2057.
[39]莫显兰,史列琴,陆秋利,等. Sl-miR482在番茄果实中的表达分析及STTM沉默载体的构建[J].生物技术通报,2019,35(12):50‐56.
MO X L,SHI L Q,LU Q L,et al. Expression analysis of Sl‑miR482 in tomato fruit and the construction of STTM silencing vector[J]. Biotechnology Bulletin,2019,35(12):50‐56.
[40]姜孝成,田建红,黄科瑞,等. miR164家族及其调控种子发育与种子活力的研究进展[J]. 生命科学研究,2024,28(6):471‐502.
JIANG X C,TIAN J H,HUANG K R,et al. Advances on the miR164 family and its roles in regulating seed development and vigor [J]. Life Science Research,2024,28(6):471‐502.
[41]牟桂萍,纪春艳,许东林,等. 植物miR164家族研究进展[J].生命科学,2013,25(5):525‐531.
MOU G P,JI C Y,XU D L,et al. Advances in plant miR164 family[J]. Chinese Bulletin of Life Sciences,2013,25(5):525‐531.
[42]张好军. miR164调控玉米籽粒发育的信号通路解析[D]. 雅安:四川农业大学,2019.
ZHANG H J. Signal pathway analysis of miR164 regulating maize grain development[D]. Yaan:Sichuan Agricultural University,2019.
[43]LUAN M D,XU X Y,LU Y M,et al. Family‐wide survey of miR169s and NF‐YAs and Their expression profiles response to abiotic stress in maize roots[J].PLoS One,2014,9(3):e91369.
[44]RAGUPATHY R,RAVICHANDRAN S,MAHDI M S R, et al. Deep sequencing of wheat sRNA transcriptome reveals distinct temporal expression pattern of miRNAs in response to heat,light and UV[J].Scientific Reports,2016,6:39373.
|