| [1]CASIMIRO I,BEECKMAN T,GRAHAM N,et al.Dissecting Arabidopsis lateral root development[J].Trends in Plant Science,2003,8(4):165‐171.
[2]YU P,GUTJAHR C,LI C J,et al. Genetic control of lateral root formation in cereals[J].Trends in Plant Science,2016,21(11):951‐961.
[3]JANSEN L,ROBERTS I,DE RYCKE R,et al.Phloem‐associated auxin response maxima determine radial positioning of lateral roots in maize[J].Philosophical Transactions of the Royal Society of London Series B(Biological Sciences),2012,367 (1595):1525‐1533.
[4]PÉRET B,DE RYBEL B,CASIMIRO I,et al. Arabidopsis lateral root development:An emerging story[J]. Trends in Plant Science,2009,14(7):399‐408.
[5]CASIMIRO I,MARCHANT A,BHALERAO R P,et al.Auxin transport promotes Arabidopsis lateral root initiation[J].The Plant Cell,2001,13(4):843‐852.
[6]KEERTHANA K,RAMAKRISHNAN M,AHMAD Z,et al. Root‐derived small peptides:Key regulators of plant development,stress resilience,and nutrient acquisition[J]. Plant Science,2025,354:112433.
[7]FEDOREYEVA L I. Molecular mechanisms of regulation of root development by plant peptides[J].Plants,2023,12(6):1320.
[8]BUTENKO M A,PATTERSON S E,GRINI P E,et al.INFLORESCENCE DEFICIENT IN ABSCISSION controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants[J].The Plant Cell,2003,15(10):2296‐2307.
[9]VIE A K,NAJAFI J,LIU B,et al. The IDA/IDA‐LIKE and PIP/PIP‐LIKE gene families in Arabidopsis:Phylogenetic relationship,expression patterns,and transcriptional effect of the PIPL3 peptide[J]. Journal of Experimental Botany,2015,66(17):5351‐5365.
[10]MATSUBAYASHI Y. Posttranslationally modified small‐peptide signals in plants[J].Annual Review ofPlant Biology,2014,65:385‐413.
[11]STENVIK G E,TANDSTAD N M,GUO Y F,et al. The EPIP peptide of INFLORESCENCE DEFICIENT IN
ABSCISSION is sufficient to induce abscission in Arabidopsis through the receptor‐like kinases HAESA and HAESA‐LIKE2[J].The Plant Cell,2008,20(7):1805‐1817.
[12]HUSSAIN S,WANG W,AHMED S,et al. PIP2,an auxin induced plant peptide hormone regulates root and hypocotyl elongation in Arabidopsis[J]. Frontiers in Plant Science,2021,12:646736.
[13]崔俊美,魏家萍,董小云,等. PIP/PIPL:一类调控植物逆境响应和发育的植物内源性多肽[J].生物技术通报,2023,39(3):35‐42.
CUI J M,WEI J P,DONG X Y,et al. PIP/PIPL:A kind of endogenous plant peptide regulating plant stress response and development[J].Biotechnology Bulletin,2023,39(3):35‐42.
[14]GUBERT C M,LILJEGREN S J. HAESA and HAESA‐LIKE2 activate organ abscission downstream of NEVERSHED and EVERSHED in Arabidopsis flowers[J]. Plant Signaling & Behavior,2014,9(7):e29115.
[15]KUMPF R P,SHI C L,LARRIEU A,et al. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence[J]. PNAS,2013,110(13):5235‐5240.
[16]LI B H,KAMIYA T,KALMBACH L,et al. Role of LOTR1 in nutrient transport through organization of spatial distribution of root endodermal barriers[J].Current Biology,2017,27(5):758‐765.
[17]薛瑾,吴健,卢秀香,等. 烟草磺肽素(PSK)基因家族鉴定及抗旱功能分析[J].中国烟草科学,2024,45(3):77‐85.
XUE J,WU J,LU X X,et al. Analysis of sulfopeptin(PSK)gene family and drought resistance in tobacco[J]. Chinese Tobacco Science,2024,45(3):77‐85.
[18]CHIEN P S,NAM H G,CHEN Y R. A salt‐regulated peptide derived from the CAP superfamily protein negatively regulates salt‐stress tolerance in Arabidopsis[J]. Journal of Experimental Botany,2015,66(17):5301‐5313.
[19]HOU S G,WANG X,CHEN D H,et al. The secreted peptide PIP1 amplifies immunity through receptor‐like kinase 7[J]. PLoS Pathogens,2014,10(9):e1004331.
[20] VIE A K,NAJAFI J,WINGE P,et al. The IDA‐LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana[J].Journal of Experimental Botany,2017,68(13):3557‐3571.
[21]GUO C,WANG Q,LI Z Y,et al. Bioinformatics and expression analysis of IDA‐like genes reveal their potential functions in flower abscission and stress response in tobacco(Nicotiana tabacum L.)[J].Frontiers in Genetics,2021,12:670794.
[22]LI C Y,LI Y Y,SONG G S,et al. Gene expression and expression quantitative trait loci analyses uncover natural variations underlying the improvement of important agronomic traits during modern maize breeding[J].The Plant Journal,2023,115(3):772‐787.
[23]YU P,HOCHHOLDINGER F,LI C J. Plasticity of lateral root branching in maize[J]. Frontiers in Plant Science,2019,10:363.
[24]CHEN C J,CHEN H,ZHANG Y,et al. TBtools:An integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant,2020,13(8):1194‐1202.
[25]LESCOT M,DÉHAIS P,THIJS G,et al. PlantCARE,a database of plant cis‐acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325‐327.
[26]BAILEY T L,JOHNSON J,GRANT C E,et al. The MEME suite[J].Nucleic Acids Res,2015,43(W1):W39‐W49.
[27]WALLEY J W,SARTOR R C,SHEN Z X,et al.Integration of omic networks in a developmental atlas of maize[J]. Science,2016,353(6301):814‐818.
[28]WATERS A J,MAKAREVITCH I,NOSHAY J,et al.Natural variation for gene expression responses to abiotic stress in maize[J]. The Plant Journal,2017,89 (4):706‐717.
[29]FORESTAN C,AIESE CIGLIANO R,FARINATI S,et al.Stress‐induced and epigenetic‐mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis[J]. Scientific Reports,2016,6:30446.
[30]VENTIMILLA D,VELÁZQUEZ K,RUIZ‐RUIZ S,et al. IDA(INFLORESCENCE DEFICIENT IN ABSCISSION)‐like peptides and HAE(HAESA)‐like receptors regulate corolla abscission in Nicotiana benthamiana flowers[J].BMC Plant Biology,2021,21 (1):226.
[31]YING P Y,LI C Q,LIU X C,et al. Identification and molecular characterization of an IDA‐like gene from Litchi,LcIDL1,whose ectopic expression promotes floral organ abscission in Arabidopsis[J]. Scientific Reports,2016,6:37135.
[32]LIU C,ZHANG C Y,FAN M X,et al. GmIDL2a and GmIDL4a,encoding the inflorescence deficient in abscission‐like protein,are involved in soybean cell wall degradation during lateral root emergence[J].International Journal of Molecular Sciences,2018,19 (8):2262.
[33]VILLAO‐UZHO L, CHÁVEZ‐NAVARRETE T,PACHECO‐COELLO R,et al. Plant promoters:Their identification, characterization, and role in gene regulation[J]. Genes,2023,14(6):1226.
[34]MEIER M,LIU Y,LAY‐PRUITT K S,et al.Auxin‐mediated root branching is determined by the form of available nitrogen[J]. Nature Plants,2020,6 (9):1136‐1145.
[35]SHITIZ K,MISHRA P,RAITHATHA A,et al.Napropamide affects auxin levels and modulates gene expression of auxin transporters in Solanum lycopersicum(tomato)[J]. Advances in Weed Science,2025,43:e020250051.
[36]杨梅,李延红,付艺萍,等. 枳和甜橙中AUX/LAX和PIN基因家族全基因组鉴定及在缺硼与生长素处理下的表达分析[J]. 江西农业大学学报,2025,47(4):932‐946.
YANG M,LI Y H,FU Y P,et al. Genome‐wide identification,bioinformatics analysis and expression analysis under boron deficiency and auxin application conditions of AUX/LAX and PIN gene families in Citrus[J]. Acta Agriculturae Universitatis Jiangxiensis,2025,47(4):932‐946.
[37]STOECKLE D,THELLMANN M,VERMEER J E.Breakout‐lateral root emergence in Arabidopsis thaliana[J].Current Opinion in Plant Biology,2018,41:67‐72.
[38]RASHOTTE A M,BRADY S R,REED R C,et al.Basipetal auxin transport is required for gravitropism in roots of Arabidopsi[s J]. Plant Physiol,2000,122(2):481‐490.
[39]王鑫. 拟南芥小分子多肽IDL6调控免疫和发育的分子机制[D]. 泰安:山东大学,2016.
WANG X. The molecularmechanismof small molecule polypeptide IDL6 in regulationof plant immunity and development of Arabidopsis thaliana[D]. Taian:Shandong University,2016.
|