[1]张红霞,丁勤,李桂冬,等. 小麦全蚀病抗性与根部性状的关系[J]. 麦类作物学报,2015,35(9):1320‑1324.
ZHANG H X,DING Q,LI G D,et al. Relationship between take‑all resistance and root phynotype of wheat(Triticum aestivum)[J]. Journal of Triticeae Crops. 2015,35(9):1320‑1324.
[2]FREEMAN J,WARD E. Gaeumannomyces graminis,the take‑all fungus and its relatives[J].Molecular Plant Pathology,2004,5(4):235‑252.
[3]WANG Z W,PENG Q,GAO X,et al. Novel fungicide 4‑chlorocinnamaldehyde thiosemicarbazide(PMDD)inhibits laccase and controls the causal agent of take‑all disease in wheat,Gaeumannomyces graminis var.tritici[J].Journal of Agricultural and Food Chemistry,2020,68(19):5318‑5326.
[4]ZHAO G Y,SUN T J,ZHANG Z N,et al. Management of take‑all disease caused by Gaeumannomyces graminis var.tritici in wheat through Bacillus subtilis strains[J].Frontiers in Microbiology,2023,14:1118176.
[5]YANG M M,WEN S S,MAVRODI D V,et al. Biological control of wheat root diseases by the CLP‑producing strain Pseudomonas fluorescens HC1‑07[J].Phytopathology,2014,104(3):248‑256.
[6]王文肖,刘美玲,阙亚伟,等. 贝莱斯芽孢杆菌EA19 与多菌灵复配防治小麦赤霉病研究[J].河南农业科学,2024,53(10):117‑126.
WANG W X,LIU M L,QUE Y W,et al. Combination of Bacillus velezensis EA19 and carbendazim to control Fusarium head blight on wheat[J]. Journal of Henan Agricultural Sciences,2024,53(10):117‑126.
[7]XU W,XU L L,DENG X X,et al. Biological control of take‑all and growth promotion in wheat by Pseudomonas chlororaphis YB‑10[J]. Pathogens,2021,10(7):903.
[8]WANG M,XING Y W,WANG J F,et al. The role of the Chi1 gene from the endophytic bacteria Serratia proteamaculans 336x in the biological control of wheat take‑all[J].Canadian Journal of Microbiology,2014,60(8):533‑540.
[9]HUANG W,WAN Y P,SU H,et al. Recent advances in phenazine natural products:Biosynthesis and metabolic engineering[J]. Journal of Agricultural and Food Chemistry,2024,72(39):21364‑21379.
[10]SOMEYA N,KUBOTA M,TAKEUCHI K,et al.Diversity of antibiotic biosynthesis gene‑possessing rhizospheric fluorescent pseudomonads in Japan and their biocontrol efficacy[J]. Microbes and Environments,2020,35(2):ME19155.
[11]HEEB S,HAAS D. Regulatory roles of the GacS/GacA two‑component system in plant‑associated and other gram‑negative bacteria[J]. Molecular Plant‑Microbe Interactions,2001,14(12):1351‑1363.
[12]MUZIO F M,HAMILTON C D,STINCONE P,et al.Comparative multi‑omics survey reveals novel specialized metabolites and biosynthetic gene clusters under GacS control in Pseudomonas donghuensis strain SVBP6[J].Molecular Microbiology,2024,122(6):896‑913.
[13]HUANG C J,PAUWELYN E,ONGENA M,et al.Both GacS‑regulated lipopeptides and the type three secretion system contribute to Pseudomonas cichorii induced necrosis in lettuce and chicory[J].Research in Microbiology,2025,176(1/2):104249.
[14]WORKENTINE M L,CHANG L M,CERI H,et al.The GacS‑GacA two‑component regulatory system of Pseudomonas fluorescens: A bacterial two‑hybrid analysis[J].FEMS Microbiology Letters,2009,292(1):50‑56.
[15]JIANG B,QIU H F,LU C H,et al. Uncovering the GacS‑mediated role in evolutionary progression through trajectory reconstruction in Pseudomonas aeruginosa[J]. Nucleic Acids Research,2024,52(7):3856‑3869.
[16]LIU F Y,YANG S,XU F H,et al.Characteristics of biological control and mechanisms of Pseudomonas chlororaphis zm‑1 against peanut stem rot[J].BMC Microbiology,2022,22(1):9.
[17]WANG J L,MA W J,WANG Y Z,et al. Deletion of 76 genes relevant to flagella and pili formation to facilitate polyhydroxyalkanoate production in Pseudomonas putida[J]. Applied Microbiology and Biotechnology,2018,102(24):10523‑10539.
[18]OBRANIĆ S,BABIĆ F,MARAVIĆ‑VLAHOVIČEK G.Improvement of pBBR1MCS plasmids,a very useful series of broad‑host‑range cloning vectors[J].Plasmid,2013,70(2):263‑267.
[19]O’MALLEY M R,CHIEN C F,PECK S C,et al. A revised model for the role of GacS/GacA in regulating type III secretion by Pseudomonas syringae pv. tomato DC3000[J]. Molecular Plant Pathology,2020,21(1):139‑144.
[20]SONG H H,LI Y Y,WANG Y. Two‑component system GacS/GacA,a global response regulator of bacterial physiological behaviors[J].Engineering Microbiology,2023,3(1):100051.
[21]杨珊. 绿针假单胞菌zm-1生物防治花生白绢病的作用机理研究[D].开封:河南大学,2022.
YANG S. Study on the mechanism of Pseudomonas Chlororaphis zm‑1 in biological control of peanut white silk disease[D]. Kaifeng:Henan University,2022.
[22]马丽,郭学良,姚虹宇,等. 草莓灰霉病菌拮抗内生细菌的分离鉴定及其抑菌作用[J]. 河南农业科学,2025,54(6):100‑109.
MA L,GUO X L,YAO H Y,et al. Isolation and identification of antagonistic endophytic bacteria against strawberry gray mold and their antibacterial effects[J].Journal of Henan Agricultural Sciences,2025,54(6):100‑109.
[23]彭娟.小麦内生细菌对小麦全蚀病的生物防治研究[D].开封:河南大学,2008.
PENG J.Study on biological control of wheat take‑all by endophytic bacteria[D].Kaifeng:Henan University,2008.
[24]杨春云,邓渊钰,李伟,等. 小麦全蚀病生防细菌的筛选和鉴定[J].中国生物防治学报,2018,34(6):873‑881.
YANG C Y,DENG Y Y,LI W,et al. Screening,identfication and biocontrol potential of antagonistic bacteria against Gaeumannomyces graminis var.tritici[J].Chinese Journal of Biological Control,2018,34(6):873‑881.
[25]雷震鸣. 铜转位P型ATP酶CueA在绿针假单胞菌zm-1铜稳态及生防活性中的作用[D]. 开封:河南大学,2023.
LEI Z M. Role of Cu‑translocation P‑type ATPase CueA in copper homeostasis and biocontrol activity of Pseudomonas Chlororaphis zm‑1[D]. Kaifeng:Henan University,2023.
[26]XUAN G H,LIN H,LI X Y,et al. RetS regulates phage infection in Pseudomonas aeruginosa via modulating the GacS/GacA two‑component system[J].Journal of Virology,2022,96(8):e0019722.
[27]WANG Z,HUANG X Q,NIE C X,et al. The Lon protease negatively regulates pyoluteorin biosynthesis through the Gac/Rsm‑RsmE cascade and directly degrades the transcriptional activator PltR in Pseudomonas protegens H78 [J]. Environmental Microbiology Reports,2022,14(4):506‑519.
[28]ZHANG Y,ZHANG B,WU X G,et al. Characterization the role of GacA‑dependent small RNAs and RsmA family proteins on 2,4‑diacetylphloroglucinol production in Pseudomonas fluorescens 2P24[J].Microbiological Research,2020,233:126391.
[29]SABERI‑RISEH R,MORADI‑POUR M. A novel encapsulation of Streptomyces fulvissimus Uts22 by spray drying and its biocontrol efficiency against Gaeumannomyces graminis,the causal agent of take‑all disease in wheat[J].Pest Management Science,2021,77(10):4357‑4364.
|