河南农业科学 ›› 2025, Vol. 54 ›› Issue (10): 1-11.DOI: 10.15933/j.cnki.1004-3268.2025.10.001
陈艳艳1,赵明忠1,李艳1,2,华夏1,方宇辉1,2,巩晨1,齐学礼1,2
收稿日期:2025-08-07
接受日期:2025-09-30
出版日期:2025-10-15
发布日期:2025-10-16
通讯作者:
齐学礼(1982-),男,河北晋州人,研究员,博士,主要从事小麦遗传育种研究。E-mail:xueliqi888@163.com。巩晨同为通信作者
作者简介:陈艳艳(1992-),女,河南郑州人,研究实习员,硕士,主要从事小麦遗传育种研究。E-mail:13140089598@163.com。赵明忠为同等贡献作者基金资助:CHEN Yanyan1,ZHAO Mingzhong1,LI Yan1,2,HUA Xia1,FANG Yuhui1,2,GONG Chen1,QI Xueli1,2
Received:2025-08-07
Accepted:2025-09-30
Published:2025-10-15
Online:2025-10-16
摘要: 小麦是重要的粮食作物,CRISPR/Cas9基因编辑系统为小麦育种提供了有力的工具。系统阐述了CRISPR/Cas9基因编辑系统的原理及其在小麦产量性状改良、品质改良、抗逆性(生物胁迫和非生物胁迫)提升、育种进程加速中的应用研究进展,并探讨了面临的挑战和未来发展前景,为小麦分子育种提供理论依据。
中图分类号:
陈艳艳, 赵明忠, 李艳, 华夏, 方宇辉, 巩晨, 齐学礼. CRISPR/Cas9 基因编辑系统在小麦育种中的应用研究进展[J]. 河南农业科学, 2025, 54(10): 1-11.
CHEN Yanyan1, ZHAO Mingzhong1, LI Yan1, 2, HUA Xia1, FANG Yuhui1, 2, GONG Chen1, QI Xueli1, 2. Research Progress on Application of CRISPR/Cas9 Gene Editing System in Wheat Breeding[J]. Journal of Henan Agricultural Sciences, 2025, 54(10): 1-11.
| [1]TASPINAR M S,TURHAN S,YIGIDER E,et al. The role of long terminal repeat(LTR)responses to drought in selenium‐treated wheat[J]. Environmental Engineering and Management Journal,2021,20(6):917‐925.
[2]周武英. 专家学者探讨全球粮食安全与农业合作[N]. 经济参考报,2024‐06‐14(004). ZHOU W Y. Experts and scholars discuss global food security and agricultural cooperation[N]. Economic Information Daily,2024‐06‐14(004). [3]UAUY C,WULFF B B H,DUBCOVSKY J. Combining traditional mutagenesis with new high‐throughput sequencing and genome editing to reveal hidden variation in polyploid wheat[J]. Annual Review of Genetics,2017,51(1):435‐454. [4]ADAMSKI N M,BORRILL P,BRINTON J,et al. A roadmap for gene functional characterisation in crops with large genomes:Lessons from polyploid wheat[J].ELife,2020,9:e55646. [5]BORRILL P,ADAMSKI N,UAUY C. Genomics as the key to unlocking the polyploid potential of wheat[J].New Phytologist,2015,208(4):1008‐1022. [6]NATALINI A,ACCIARRI N,CARDI T. Breeding for nutritional and organoleptic quality in vegetable crops:The case of tomato and cauliflower[J]. Agriculture,2021,11:606. [7]RAMESH P,MALLIKARJUNA G,SAMEENA S,et al.Advancements in molecular marker technologies and their applications in diversity studies[J]. Journal of Biosciences,2020,45(1):123. [8]MARTIN JINEK K C. A programmable dual‐RNA:Guided DNA endonuclease in adaptive bacterial immunity[J].Science,337(6096):816‐821. [9]CHANDRASEKARAN J,BRUMIN M,WOLF D,et al.Development of broad virus resistance in non‐transgenic cucumber using CRISPR/Cas9 technology[J].Molecular Plant Pathology,2016,17(7):1140‐1153. [10]USMAN B,NAWAZ G,ZHAO N,et al. Programmed editing of rice(Oryza sativa L.)OsSPL16 gene using CRISPR/Cas9 improves grain yield by modulating the expression of pyruvate enzymes and cell cycle proteins[J].International Journal of Molecular Sciences,2020,22(1):249. [11]MAJID A,PARRAY G A,WANI S H,et al. Genome editing and its necessity in agriculture[J].International Journal of Current Microbiology and Applied Sciences,2017,6(11):5435‐5443. [12]ZHOU X M,ZHAO Y D,NI P,et al. CRISPR‐mediated acceleration of wheat improvement:Advances and perspectives[J]. Journal of Genetics and Genomics,2023,50(11):815‐834. [13]霍贯中,张欣濡,田士军,等. CRISPR/Cas12a基因编辑技术在植物中的研究进展[J]. 生物技术通报,2025,41(6):1‐11. HUO G Z,ZHANG X R,TIAN S J,et al. Research progress of CRISPR/Cas12a gene editing technology in plants[J]. Biotechnology Bulletin,2025,41(6):1‐11.[14]ADLI M. The CRISPR tool kit for genome editing and beyond[J]. Nature Communications,2018,9:1911. [15]曹巧,史占良,张国丛,等. CRISPR/Cas9技术在小麦育种中的应用进展[J]. 生物技术进展,2021,11(6):661‐667. CAO Q,SHI Z L,ZHANG G C,et al. Progress of CRISPR/Cas9 application in wheat breeding[J].Current Biotechnology,2021,11(6):661‐667. [16]王升星. 小麦种子休眠候选基因TaCNGC8-A1 和TaGASR7鉴定及其功能研究[D]. 合肥:安徽农业大学,2018. WANG S X. Identification and functional study of TaCNGC8‑A1 and TaGASR7 as candidate genes for wheat seed dormancy[D]. Hefei:Anhui Agricultural University,2018. [17]ZHANG Y,LI D,ZHANG D B,et al. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits[J]. The Plant Journal,2018,94(5):857‐866. [18]WANG W,PAN Q L,TIAN B,et al. Gene editing of the wheat homologs of TONNEAU1‐recruiting motif encoding gene affects grain shape and weight in wheat[J]. The Plant Journal,2019,100(2):251‐264. [19]GUPTA A,HUA L,ZHANG Z Z,et al. CRISPR‐induced miRNA156‐recognition element mutations in TaSPL13 improve multiple agronomic traits in wheat[J].Plant Biotechnology Journal,2023,21(3):536‐548. [20]ERRUM A,REHMAN N,UZAIR M,et al. CRISPR/Cas9 editing of wheat Ppd‐1 gene homoeologs alters spike architecture and grain morphometric traits[J].Functional & Integrative Genomics,2023,23(1):1. [21]ABE F,HAQUE E,HISANO H,et al. Genome‐edited triple‐recessive mutation alters seed dormancy in wheat [J]. Cell Reports,2019,28(5):1362‐1369. [22]WANG Y G,DU F,WANG J,et al. Improving bread wheat yield through modulating an unselected AP2/ERF gene[J]. Nature Plants,2023,8:930. [23]李晶莹. CRISPR/Cas9介导的水稻基因编辑技术体系构建与高抗性淀粉小麦新种质创制[D]. 北京:中国农业科学院,2021. LI J Y. Construction of CRISPR/Cas9‐mediated gene‐editing technology system in rice and creation of new germplasm of high‐resistant starch wheat[D]. Beijing:Chinese Academy of Agricultural Sciences,2021.[24]LI J Y,JIAO G A,SUN Y W,et al. Modification of starch composition,structure and properties through editing of TaSBEIIa in both winter and spring wheat varieties by CRISPR/Cas9[J]. Plant Biotechnology Journal,2021,19(5):937‐951. [25]RAFFAN S,ODDY J,MEAD A,et al. Field assessment of genome‐edited,low asparagine wheat:Europe’s first CRISPR wheat field trial[J]. Plant Biotechnology Journal,2023,21(6):1097‐1099. [26]SUN Z J,ZHANG M X,AN Y R,et al. CRISPR/Cas9‐mediated disruption of xylanase inhibitor protein(XIP)gene improved the dough quality of common wheat[J]. Frontiers in Plant Science,2022,13:811668. [27]ZHANG S,SHEN J T,LI D L,et al. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing[J]. Theranostics,2021,11(2):614‐648. [28]ZHANG S J,ZHANG R Z,GAO J,et al. CRISPR/Cas9‐mediated genome editing for wheat grain quality improvemen[t J]. Plant Biotechnology Journal,2021,19 (9):1684‐1686. [29]LI S N,LIN D X,ZHANG Y W,et al. Genome‐edited powdery mildew resistance in wheat without growth penalties[J]. Nature,2022,602(7897):455‐460. [30]ZHANG Y W,BAI Y,WU G H,et al. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat[J]. The Plant Journal,2017,91(4):714‐724. [31]ZHANG R R,WU Y,QU X R,et al. The RING‐finger ubiquitin E3 ligase TaPIR1 targets TaHRP1 for degradation to suppress chloroplast function[J]. Nature Communications,2024,15:6905. [32]WANG N,TANG C L,FAN X,et al. Inactivation of a wheat protein kinase gene confers broad‐spectrum resistance to rust fungi[J]. Cell,2022,185(16):2961‐2974. [33]HE F X,WANG C,SUN H L,et al. Simultaneous editing of three homoeologues of TaCIPK14 confers broad‐spectrum resistance to stripe rust in wheat[J].Plant Biotechnology Journal,2023,21(2):354‐368. [34]BRAUER E K,BALCERZAK M,ROCHELEAU H,et al. Genome editing of a deoxynivalenol‐induced transcription factor confers resistance to Fusarium graminearum in wheat[J]. Molecular Plant‐Microbe Interactions,2020,33(3):553‐560. [35]NALAM V J,ALAM S,KEEREETAWEEP J,et al.Facilitation of Fusarium graminearum infection by 9‐lipoxygenases in Arabidopsis and wheat[J].Molecular Plant‐Microbe Interactions,2015,28(10):1142‐1152. [36]KAN J H,CAI Y,CHENG C Y,et al. Simultaneous editing of host factor gene TaPDIL5‑1 homoeoalleles confers wheat yellow mosaic virus resistance in hexaploid wheat[J]. New Phytologist,2022,234(2):340‐344. [37]KAN J H,CAI Y,CHENG C Y,et al. CRISPR/Cas9‐guided knockout of eIF4E improves wheat yellow mosaic virus resistance without yield penalty[J].Plant Biotechnology Journal,2023,21(5):893‐895. [38]WANG Z X,ZHANG Y F,KANG Z S,et al.Improvement of wheat drought tolerance through editing of TaATX4 by CRISPR/Cas9[J]. Journal of Genetics and Genomics,2023,50(11):913‐916. [39]WANG J Y,LI C N,LI L,et al. DIW1 encoding a clade I PP2C phosphatase negatively regulates drought tolerance by de‐phosphorylating TaSnRK1. 1 in wheat[J]. Journal of Integrative Plant Biology,2023,65(8):1918‐1936. [40]ZHENG M,LIN J C,LIU X B,et al. Histone acetyltransferase TaHAG1 acts as a crucial regulator to strengthen salt tolerance of hexaploid wheat[J].Plant Physiology,2021,186(4):1951‐1969. [41]ZHANG H L,YU F F,XIE P,et al. A Gγ protein regulates alkaline sensitivity in crops[J]. Science,2023,379(6638):eade8416. [42]TIAN X J, QIN Z, ZHAO Y, et al. Stress granule‐associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat(Triticum aestivum)[J]. New Phytologist,2022,233(4):1719‐1731. [43]ZHANG J H,ZHANG H T,LI S Y,et al. Increasing yield potential through manipulating of an ARE1 ortholog related to nitrogen use efficiency in wheat by CRISPR/Cas9[J]. Journal of Integrative Plant Biology,2021,63(9):1649‐1663. [44]李艳,陈艳艳,华夏,等. 利用CRISPR/Cas9技术创制小麦耐低肥Taaap3突变体[J]. 河南农业科学,2023,52(11):33‐41. LI Y,CHEN Y Y,HUA X,et al. Creating of wheat Taaap3 mutant with low fertilizer tolerance using CRISPR/Cas9 technology [J]. Journal of Henan Agricultural Sciences,2023,52(11):33‐41. [45]OKADA A,ARNDELL T,BORISJUK N,et al. CRISPR/Cas9‐mediated knockout of Ms1 enables the rapid generation of male‐sterile hexaploid wheat lines for use in hybrid seed production[J]. Plant Biotechnology Journal,2019,17(10):1905‐1913. [46]LI J,WANG Z,HE G M,et al. CRISPR/Cas9‐mediated disruption of TaNP1 gene results in complete male sterility in bread wheat[J]. Journal of Genetics and Genomics,2020,47(5):263‐272. [47]ZHANG R Z,ZHANG S J,LI J H,et al. CRISPR/Cas9‐targeted mutagenesis of TaDCL4,TaDCL5 and TaRDR6 induces male sterility in common wheat[J].Plant Biotechnology Journal,2023,21(4):839‐853. [48]张强,赵振宇,李平华. 基因编辑技术在玉米中的研究进展[J]. 植物学报,2024,59(6):978‐998. ZHANG Q,ZHAO Z Y,LI P H. Research progress of gene editing technology in maize[J].Chinese Bulletin of Botany,2024,59(6):978‐998.[49]LÜ J,YU K,WEI J,et al. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3[J]. Nature Biotechnology,2020,38(12):1397‐1401. [50]SINGH M,KUMAR M,ALBERTSEN M C,et al.Concurrent modifications in the three homeologs of Ms45 gene with CRISPR‐Cas9 lead to rapid generation of male sterile bread wheat(Triticum aestivum L.)[J].Plant Molecular Biology,2018,97(4):371‐383. [51]LIU C X,ZHONG Y,QI X L,et al. Extension of the in vivo haploid induction system from diploid maize to hexaploid wheat[J]. Plant Biotechnology Journal,2020,18(2):316‐318. [52]LIU H Y,WANG K,JIA Z M,et al. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium‐mediated CRISPR system[J]. Journal of Experimental Botany,2020,71(4):1337‐1349.
[53]昝香存,常莹莹,董海滨,等. 河南省小麦种质资源品质特性多样性分析[J]. 植物遗传资源学报,2025,26(1):67‐78. [54]LIU H,CHEN W D,LI Y S,et al. CRISPR/Cas9 technology and its utility for crop improvement[J].International Journal of Molecular Sciences,2022,23 (18):10442.
[55]昝香存,常莹莹,赵志宏,等. 郑麦1860品质特性及面条加工适用性分析[J]. 麦类作物学报,2024,44(3):344‐351.
[56]高源远,MAMU Yasmeen,刘羽嘉,等. 淀粉直支比定量技术及其在食品领域中的应用[J]. 食品工业科技,2022,43(18):456‐464.
[57]李晓建. 抗性淀粉小麦农艺新种质的快速定向创制及特性分析[D]. 杨凌:西北农林科技大学,2024.
[58]刘畅. 小麦籽粒醇溶蛋白含量的GWAS和QTL分析及应用[D]. 泰安:山东农业大学,2024. [59]SÁNCHEZ‐LEÓN S,GIL‐HUMANES J,OZUNA C V,et al. Low‐gluten,nontransgenic wheat engineered with CRISPR/Cas9[J]. Plant Biotechnology Journal,2018,16(4):902‐910. [60]LI J,LI Y,MA L G. Recent advances in CRISPR/Cas9 and applications for wheat functional genomics and breeding[J]. aBIOTECH,2021,2(4):375‐385. [61]LIU D,YANG H M,ZHANG Z H,et al. An elite γ‐gliadin allele improves end‐use quality in wheat[J].New Phytologist,2023,239(1):87‐101. [62]JOUANIN A,BORM T,BOYD L A,et al. Development of the GlutEnSeq capture system for sequencing gluten gene families in hexaploid bread wheat with deletions or mutations induced by γ‐irradiation or CRISPR/Cas9[J].Journal of Cereal Science,2019,88:157‐166. [63]RAFFAN S,SPARKS C,HUTTLY A,et al. Wheat with greatly reduced accumulation of free asparagine in the grain,produced by CRISPR/Cas9 editing of asparagine synthetase gene TaASN2[J]. Plant Biotechnology Journal,2021,19(8):1602‐1613. [64]SAVARY S,WILLOCQUET L,PETHYBRIDGE S J,et al. The global burden of pathogens and pests on major food crops[J]. Nature Ecology & Evolution,2019,3(3):430‐439. [65]DHLEMANN G. Faculty opinions recommendation of genome‐edited powdery mildew resistance in wheat without growth penalties [J]. Faculty Opinions‐Post‐Publication Peer Review of the Biomedical Literature,2022. 602(7897):455‐460.
[66]王禹涵,侯国超. 全球首张小麦抗条锈病基因图谱绘制成功[N]. 科技日报,2025‐07‐24(002). [67]SU Z Q,BERNARDO A,TIAN B,et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat[J]. Nature Genetics,2019,51(7):1099‐1105.
[68]徐晓艺. 小麦响应小麦黄花叶病毒的生理机制探究[D].烟台:烟台大学,2024. [69]YANG J,LIU P,ZHONG K L,et al. Advances in understanding the soil‐borne viruses of wheat:From the laboratory bench to strategies for disease control in the field[J]. Phytopathology Research,2022,4(1):27.
[70]范德佳,王汝琴,何震天,等. 小麦黄花叶病抗性研究及育种应用进展[J]. 核农学报,2024,38(5):861‐869. [71]MURUGAVELU G S,HARISH CHANDAR S R,SAKTHIVEL S K,et al. Progress and updates of CRISPR/Cas9‐mediated genome editing on abiotic stress tolerance in agriculture:A review[J]. Sugar Tech,2025,27(1):29‐43.
[72]赵丽英,邓西平,山仑. 活性氧清除系统对干旱胁迫的响应机制[J]. 西北植物学报,2005,25(2):413‐418. [73]ULLAH A,NADEEM F,NAWAZ A,et al. Heat stress effects on the reproductive physiology and yield of wheat[J]. Journal of Agronomy and Crop Science,2022,208(1):1‐17. [74]HAO X Y,YU T F,PENG C J,et al. Somatic embryogenetic receptor kinase TaSERL2 regulates heat stress tolerance in wheat by influencing TaBZR2 protein stability and transcriptional activity[J]. Plant Biotechnology Journal,2025,23(7):2537‐2553. [75]SONG L,LIU J,CAO B L,et al. Reducing brassinosteroid signalling enhances grain yield in semi‐dwarf wheat[J]. Nature,2023,617:118‐124.
[76]李常英,安静,窦京海,等. 掺混尿素配施有机肥对冬小麦氮肥利用率、产量及土壤供氮性能的影响[J]. 山东农业科学,2025,57(2):105‐113.
[77]叶兴国,林志珊,王轲,等. 2023年小麦新基因挖掘和遗传改良新技术研究回眸[J].科技导报,2024,42(1):174‐187. [78]YIGIDER E,TASPINAR M S,AGAR G. Advances in bread wheat production through CRISPR/Cas9 technology:A comprehensive review of quality and other aspects[J]. Planta,2023,258(3):55. [79]LEE J K,JEONG E,LEE J,et al. Directed evolution of CRISPR‐Cas9 to increase its specificity[J]. Nature Communications,2018,9:3048. [80]CHEN K,HAN H S,ZHAO S,et al. Lung and liver editing by lipid nanoparticle delivery of a stable CRISPR‐Cas9 ribonucleoprotein[J]. Nature Biotechnology,2024:1‐13.
[81]武林琳,竹梦婕,王咪,等. CRISPR/Cas9技术在农作物中应用的局限及改进[J]. 现代农业科技,2020(22):26‐29.
XUE S,WANG S Y,LIU L,et al. Precision gene editing technologies based on CRISPR/Cas9:A review [J]. Chinese Journal of Biotechnology,2023,39(7):2566‐2578.
[84]RUFFOLO J A,NAYFACH S,GALLAGHER J,et al.Design of highly functional genome editors by modelling CRISPR‐Cas sequences[J]. Nature,2025,645(8080):518‐525. |
| [1] | 张素瑜, 刘红杰, 任德超, 杨明达, 葛君, 赵敬领, 朱培培, 郑东方. 外源调节剂对小麦强、弱势粒灌浆及产量的影响[J]. 河南农业科学, 2025, 54(9): 23-33. |
| [2] | 姚会娜, 李俊飞, 牛英颖, 冯爽, 姜亚玲, 李珂, 高微微. 不同种源延胡索在河南省种植的农艺性状及品质差异[J]. 河南农业科学, 2025, 54(9): 84-90. |
| [3] | 王皓东, 逯一方, 杨珊, 刘凤英, 王刚. 绿针假单胞菌gacS 基因对小麦全蚀病生防能力的影响[J]. 河南农业科学, 2025, 54(9): 112-118. |
| [4] | 陈震, 管庆林, 刘化冰, 蒋健, 卢昕博, 董淑雅, 武云杰, 吴键. 基于代谢组学的不同产区加热卷烟原料品质分析[J]. 河南农业科学, 2025, 54(9): 159-170. |
| [5] | 杨鑫, 李艳红, 聂俊, 谢玉明, 史亮亮, 郑锦荣. 不同LED 光配方育苗对樱桃番茄生长和产量的影响[J]. 河南农业科学, 2025, 54(8): 140-150. |
| [6] | 刘星麟, 刘园, 杨凡, 刘布春, 韩锐. 基于机器学习算法的河南省县级冬小麦产量模拟研究[J]. 河南农业科学, 2025, 54(8): 167-180. |
| [7] | 马尚英, 夏婷婷, 韩鹏彬, 张梦姣, 毛应杰, 王志强, 辛泽毓, 林同保, 连延浩, 任永哲. 施氮量和施氮方式对宽窄行种植冬小麦氮素吸收利用、产量及土壤氮残留的影响[J]. 河南农业科学, 2025, 54(8): 38-50. |
| [8] | 钱建财, 朱雨非, 丹冬淳, 黄五星, 张莉. 不同起垄时间对洛阳烟区烤烟生育期和品质的影响[J]. 河南农业科学, 2025, 54(8): 60-68. |
| [9] | 金江华, 夏冰, 李旭, 于大鹏, 郭伟, 陈焘, 吴文信, 李思军, 王新月, 黄杰, 邓小华. 根区施用微生物肥料下的稻茬烤烟烟叶品质和经济性状模糊综合评价[J]. 河南农业科学, 2025, 54(8): 82-91. |
| [10] | 程周琦, 刘玉午, 卓乐, 邱林, 易镇邪. 氮硅配施对双季稻田间稻飞虱发生与水稻产量的影响[J]. 河南农业科学, 2025, 54(8): 92-101. |
| [11] | 高小峰, 张秋月, 周晓静, 左卫芳, 黄冉涛, 郭双双, 源朝政, 郑明燕. EMS 诱变对石榴种子萌发及幼苗生长的影响[J]. 河南农业科学, 2025, 54(8): 133-139. |
| [12] | 刘秋员, 龚静阳, 卫云飞, 李猛, 季新, 刘娟, 冯凡, 王付娟, 雷振山, 宋晓华. 株距与穴苗数配置对粳稻穗部性状、产量及品质的影响[J]. 河南农业科学, 2025, 54(7): 21-29. |
| [13] | 蔡宗程, 吕亮雨, 刘青青, 张海蓉, 李发毅, 保善存, 付守全, 施建军. 施肥和种植密度对燕麦饲草产量、品质和土壤理化性质的影响[J]. 河南农业科学, 2025, 54(7): 30-39. |
| [14] | 王文霞, 刘宇琪, 夏清, 智慧, 杜杰. 外源硒对干旱胁迫下胡麻生理特性的影响[J]. 河南农业科学, 2025, 54(7): 55-63. |
| [15] | 刘玉午, 卓乐, 程周琦, 邱林, 李有志, 屠乃美, 易镇邪. 水分管理方式对双季稻产量和稻飞虱发生的影响[J]. 河南农业科学, 2025, 54(7): 98-106. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||