[1]谭深,吴炳方,张鑫.基于Google Earth Engine与多源遥感数据的海南水稻分类研究[J].地球信息科学学报,2019,21(6):937‐947.
TAN S,WU B F,ZHANG X.Mapping paddy rice in the Hainan Province using both Google Earth Engine and remote sensing images[J].Journal of Geo‐information Science,2019,21(6):937‐947.
[2]张焕雪,李强子,文宁,等.农作物种植面积遥感抽样调查的误差影响因素分析[J].农业工程学报,2014,30(13):176‐184.
ZHANG H X,LI Q Z,WEN N,et al.Analysis on estimation accuracy of crop area caused by spatial sampling factors based on remote sensing data[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(13):176‐184.
[3]陶莉,胡召玲.利用Sentinel-2A数据提取长江中下游丘陵地带农作物种植信息[J].测绘通报,2021(7):39‐43.
TAO L,HU Z L.Crop planting structure identification based on Sentinel‐2A data in hilly region of middle and lower reaches of Yangtze River[J].Bulletin of Surveying and Mapping,2021(7):39‐43.
[4]贾坤,李强子.农作物遥感分类特征变量选择研究现状与展望[J].资源科学,2013,35(12):2507‐2516.
JIA K,LI Q Z.Review of features selection in crop classification using remote sensing data[J].Bulletin of Surveying and Mapping,2013,35(12):2507‐2516.
[5]DE CASTRO FILHO H C,DE CARVALHO JÚNIOR O A,FERREIRA DE CARVALHO O L,et al.Rice crop detection using LSTM,Bi ‐LSTM,and machine learning models from Sentinel‐1 time series[J].Remote Sensing,2020,12(16):2655.
[6]ORYNBAIKYZY A,GESSNER U,CONRAD C.Crop type classification using a combination of optical and radar remote sensing data:A review[J].International Journal of Remote Sensing,2019,40(17):6553‐6595.
[7]YANG M,GUO B,WANG J. A novel and robust method for large‐scale single‐season rice mapping based on phenology and statistical data[J].ISPRS Journal of Photogrammetry and Remote Sensing,2024,213:14‐32.
[8]郭交,朱琳,靳标.基于Sentinel-1和Sentinel-2数据融合的农作物分类[J].农业机械学报,2018,49(4):192‐198.
GUO J,ZHU L,JIN B.Crop classification based on data fusion of Sentinel‐1 and Sentinel‐2[J].Transactions of the Chinese Society for Agricultural Machinery,2018,49(4):192‐198.
[9]GIBRIL M B A,BAKAR S A,YAO K,et al.Fusion of RADARSAT‐2 and multi‐spectral optical remote sensing data for LULC extraction in a tropical agricultural area[J].Geocarto International,2017,32(7):735‐748.
[10]何泽,李世华.水稻雷达遥感监测研究进展[J].遥感学报,2023,27(10):2363‐2382.
HE Z,LI S H.Research progress on radar remote sensing for rice growth monitoring[J].National Remote Sensing Bulletin,2023,27(10):2363‐2382.
[11]YE Z X,YANG K L,LIN Y W,et al.A comparison between pixel‐based deep learning and object‐based image analysis(OBIA) for individual detection of cabbage plants based on UAV visible‐light images[J].Computers and Electronics in Agriculture,2023,209:107822.
[12]XIAO W,XU S C,HE T T.Mapping paddy rice with Sentinel‐1/2 and phenology,object‐based algorithm:A implementation in Hangjiahu plain in China using GEE platform[J].Remote Sensing,2021,13(5):990.
[13]XIAO X M,BOLES S,LIU J Y,et al.Mapping paddy rice agriculture in Southern China using multi‐temporal MODIS images[J].Remote Sensing of Environment,2005,95:480‐492.
[14]DONG J W,XIAO X M,MENARGUEZ M A,et al.Mapping paddy rice planting area in northeastern Asia with Landsat 8 images,phenology‐based algorithm and Google Earth Engine[J].Remote Sensing of Environment,2016,185:142‐154.
[15]于飞,吕争,隋正伟,等. 基于特征优选的多时相SAR 数据水稻信息提取方法[J].农业机械学报,2023,54(3):259‐265,327.
YU F,LV Z,SUI Z W,et al. Extraction of rice information using multi‐temporal SAR data based on feature optimization[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(3):259‐265,327. [16]刘通,任鸿瑞.GEE平台下利用物候特征进行面向对象的水稻种植分布提取[J].农业工程学报,2022,38(12):189‐196.
LIU T,REN H R. Object‐oriented extraction of paddy rice planting areas using phenological features from the GEE platform[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(12):189‐196.
[17]张卫春.基于Sentinel-2数据的低山丘陵区水稻种植面积监测[D].重庆:西南大学,2020.
ZHANG W C. Mapping rice paddy based on machine learning with Sentinel‐2 multi‐temporal data[D].Chongqing:Southwestern University,2020.
[18]桑国庆,唐志光,毛克彪,等.基于GEE云平台与Sentinel数据的高分辨率水稻种植范围提取:以湖南省为例[J].作物学报,2022,48(9):2409‐2420.
SANG G Q,TANG Z G,MAO K B,et al.High‐resolution paddy rice mapping using Sentinel data based on GEE platform:A case study of Hunan Province,China[J]. Acta Agronomica Sinica,2022,48 (9):2409‐2420.
[19]张征云,江文渊,张彦敏,等.基于哨兵SAR数据和多光谱数据的水稻识别研究[J].生态与农村环境报,2023,39(4):556‐564.
ZHANG Z Y,JIANG W Y,ZHANG Y M,et al.Research on rice area extraction based on Sentinel SAR data and multi‐spectral data[J].Journal of Ecology and Rural Environment,2023,39(4) :556‐564.
[20]范莉,王妍,祝好,等.多种光谱指数联合地形特征对复杂地形区主要粮食作物种植面积的遥感识别[J].中国农业气象,2023,44(9):845‐856.
FAN L,WANG Y,ZHU H,et al.Remote sensing for the planting area of major grain crops in complex terrain regions by integrating multiple spectral indices with topographic features[J].Chinese Journal of Agrometeorology,2023,44(9):845‐856.
[21]翟鹏飞,李世华,胡月明.协同光学与雷达遥感数据的面向对象土地覆盖变化检测[J]. 农业工程学报,2021,37(23):216‐224.
ZHAI P F,LI S H,HU M Y.Object‐oriented land cover change detection combining optical and radar remote sensing data[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(23):216‐224.
[22]HAN J C,ZHANG Z,LUO Y C,et al.Annual paddy rice planting area and cropping intensity datasets and their dynamics in the Asian monsoon region from 2000 to 2020[J].Agricultural Systems,2022,200:103437.
[23]郑紫瑞,赵辉杰,位盼盼,等.集成多源遥感数据与生育期时序光谱特征的水稻种植面积提取[J].河南农业科学,2023,52(10):153‐161.
ZHENG Z R,ZHAO H J,WEI P P,er al.Integration of multi‐source remote sensing data and temporal spectral features of growth stages for rice planting area extraction[J].Journal of Henan Agricultural Sciences,2023,52(10):153‐161.
[24]YIN Q,LIU M,CHENG J,et al.Mapping paddy rice planting area in northeastern China using spatiotemporal data fusion and phenology‐based method[J].Remote Sensing,2019,11(14):1699.
[25]姚园,毋亭,李一凡,等.基于水稻物候参数及面向对象算法的稻田识别[J].农业工程学报,2024,40(11):150‐158.
YAO Y,WU T,LI Y F,et al.Paddy field identification using rice phenological parameters and object‐oriented algorithm[J].Transactions of the Chinese Society of Agricultural Engineering,2024,40(11):150‐158.
[26]张昊,高小红,史飞飞,等.基于Sentinel-2 MSI与Sentinel-1 SAR相结合的黄土高原西部撂荒地提取:以青海民和县为例[J].自然资源遥感,2022,34(4):144‐154.
ZHANG H,GAO X H,SHI F F,et al.Sentinel‐2 MSI and Sentinel‐1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J].Remote Sensing for Natural Resources,2022,34(4):144‐154.
[27]VELOSO A,MERMOZ S,BOUVET A,et al.Understanding the temporal behavior of crops using Sentinel‐1 and Sentinel‐2‐like data for agricultural applications[J].Remote Sensing of Environment,2017,199:415‐426.
[28]BREIMAN L. Random forests[J].Machine Learning,2001,45:5‐32.
[29]王斌,何丙辉,林娜,等. 基于随机森林特征选择的茶园遥感提取[J].吉林大学学报(工学版),2022,52(7):1719‐1732.
WANG B,HE B H,LIN N,et al.Tea plantation remote sensing extraction based on random forest feature selection[J].Journal of Jilin University(Engineering and Technology Edition),2022,52(7):1719‐1732.
[30]陈映彤.多时相遥感影像的湖南省醴陵市水稻生长期以及面积提取[D].广州:华南农业大学,2018.
CHEN Y T. Extraction of paddy rice growing period and cropping area in Liling City,Hunan Province using multi‐temporal remote sensing images[D].Guangzhou:South China Agricultural University,2018.
[31]任鸿瑞,张悦琦,何奇瑾,等.基于FY-3 MERSI遥感数据的水稻种植分布提取[J].光谱学与光谱分析,2023,43(5):1606‐1611.
REN H R,ZHANG Y Q,HE Q J,et al.Extraction of paddy rice planting area based on multi‐temporal FY‐3 MERSI remote sensing images[J].Spectroscopy and Spectral Analysis,2023,43(5):1606‐1611.
[32]滕文秀,王妮,施慧慧,等.结合面向对象和深度特征的高分影像树种分类[J].测绘通报,2019(4):38‐42.
TENG W X,WANG N,SHI H H,et al.Tree species classification of high resolution image combining with object‐oriented and deep feature[J].Bulletin of Surveying and Mapping,2019(4):38‐42.
[33]王佳玥,蔡志文,王文静,等.协同多源国产高分影像和面向对象方法的南方农作物遥感识别[J].中国农业科学,2023,56(13):2474‐2490.
WANG J Y,CAI Z W,WANG W J,et al.Integrating multi‐source GaoFen images and object‐based methods for crop type identification in south China[J].Scientia Agricultura Sinica,2023,56(13):2474‐2490.
[34]闫明,庞勇,何云玲,等.基于GEE云平台和Sentinel-2 数据的普洱市森林覆盖制图[J].遥感技术与应用,2023,38(2):432‐442.
YAN M,PANG Y,HE Y L,et al.Remote sensing based land cover classification of Pu'er City using GEE cloud platform and Sentinel‐2 data[J].Remote Sensing Technology and Application,2023,38(2):432‐442.
|