河南农业科学 ›› 2024, Vol. 53 ›› Issue (5): 10-21.DOI: 10.15933/j.cnki.1004-3268.2024.05.002
翟崇凯1,2,3,4,毛福超1,2,3,4,田文静1,2,3,4,王聪慧1,2,3,4,王迎鲜5,张贺伟1,2,3,4
收稿日期:
2023-09-27
出版日期:
2024-05-15
发布日期:
2024-06-06
通讯作者:
张贺伟(1986-),男,河南洛阳人,教授,博士,主要从事病原微生物与疫苗方面研究。E-mail:zhanghewei0825@126.com
作者简介:
翟崇凯(1989-),男,河南洛阳人,讲师,博士,主要从事病原微生物与免疫学方面研究。E-mail:zhaichongkai@gmail.com
基金资助:
ZHAI Chongkai1,2,3,4,MAO Fuchao1,2,3,4,TIAN Wenjing1,2,3,4,WANG Conghui1,2,3,4,WANG Yingxian5,ZHANG Hewei1,2,3,4
Received:
2023-09-27
Published:
2024-05-15
Online:
2024-06-06
摘要: 与传统疫苗相比,mRNA疫苗具有安全性高、有效性好、研发周期短等特点,使其在传染病的预防和控制方面具有得天独厚的优势。目前,mRNA疫苗在新型冠状病毒(COVID-19)肺炎、流感、埃博拉病毒病、寨卡病毒病等人类疾病的防控中取得了巨大进展,但动物用mRNA疫苗研究尚不深入。因此,开发动物用mRNA疫苗来预防和控制家畜、家禽、野生动物等的传染性疾病,成为动物疫病和公共卫生领域的重要研究方向之一。全面探讨了动物传染病mRNA疫苗的设计、制备、递送系统、应用、优势、挑战以及前景,为研制和开发动物传染病mRNA疫苗提供参考。
中图分类号:
翟崇凯, 毛福超, 田文静, 王聪慧, 王迎鲜, 张贺伟. mRNA疫苗在动物传染病中的研究进展及应用[J]. 河南农业科学, 2024, 53(5): 10-21.
ZHAI Chongkai, MAO Fuchao, TIAN Wenjing, WANG Conghui, WANG Yingxian, ZHANG Hewei. mRNA Vaccines:Research Progress and Applications in Animal Infectious Diseases[J]. Journal of Henan Agricultural Sciences, 2024, 53(5): 10-21.
[1]DOLGIN E.The tangled history of mRNA vaccines[J].Nature,2021,597:318‑324. [2]SZABÓ G T,MAHINY A J,VLATKOVIC I.COVID‑19 mRNA vaccines:Platforms and current developments[J].Molecular Therapy,2022,30(5):1850‑1868. [3]KARAM M,DAOUD G.mRNA vaccines:Past,present,future[J].Asian Journal of Pharmaceutical Sciences,2022,17(4):491‑522. [4]PARDI N,HOGAN M J,WEISSMAN D.Recent advances in mRNA vaccine technology[J].Current Opinion in Immunology,2020,65:14‑20. [5]MIAO L,ZHANG Y,HUANG L.mRNA vaccine for cancer immunotherapy[J].Molecular Cancer,2021,20 (1):41. [6]POLACK F P,THOMAS S J,KITCHIN N,et al.Safety and efficacy of the BNT162b2 mRNA COVID‑19 vaccine[J].The New England Journal of Medicine,2020,383 (27):2603‑2615. [7]SAHLY H M,BADEN L R,ESSINK B,et al.Efficacy of the mRNA‑1273 SARS‑COV‑2 vaccine at completion of blinded phase[J].The New England Journal of Medicine,2021,385(19):1774‑1785. [8]TEO S P.Review of COVID‑19 mRNA vaccines:BNT162b2 and mRNA‑1273[J].Journal of Pharmacy Practice,2022,35(6):947‑951. [9]ZENG C,ZHANG C,WALKER P G,et al.Formulation and delivery technologies for mRNA vaccines[J].Current Topics in Microbiology and Immunology,2022,440:71‑110. [10]WADHWA A,ALJABBARI A,LOKRAS A,et al.Opportunities and challenges in the delivery of mRNA‑based vaccines[J].Pharmaceutics,2020,12 (2):102. [11]LI H,CHEN Y,MACHALABA C C,et al.Wild animal and zoonotic disease risk management and regulation in China:Examining gaps and one health opportunities in scope,mandates,and monitoring systems[J].One Health,2021,13:100301. [12]ZHANG C,MARUGGI G,SHAN H,et al.Advances in mRNA vaccines for infectious diseases[J].Frontiers in Immunology,2019,10:594. [13] BAI Y,WANG Q,LIU M,et al.The next major emergent infectious disease:Reflections on vaccine emergency development strategies[J].Expert Review of Vaccines,2022,21(4):471‑481. [14]LAMB Y N.BNT162b2 mRNA COVID‑19 vaccine:First approval[J].Drugs,2021,81(4):495‑501. [15]HAUSE A M,MARQUEZ P,ZHANG B C,et al.Safety monitoring of bivalent COVID‑19 mRNA vaccine booster doses among persons aged ≥12 years‑United States,August 31‑October 23,2022[J].Morbidity and Mortality Weekly Report,2022,71(44):1401‑1406. [16]PARDI N,HOGAN M J,PORTER F W,et al.mRNA vaccines:New era in vaccinology[J].Nature Reviews Drug Discovery,2018,17(4):261‑279. [17]VISHWESHWARAIAH Y L,DOKHOLYAN N V.mRNA vaccines for cancer immunotherapy[J].Frontiers in Immunology,2022,13:1029069. [18]CAI X H,LI J J,LIU T,et al.Infectious disease mRNA vaccines and a review on epitope prediction for vaccine design[J].Briefings in Functional Genomics,2021,20(5):289‑303. [19]LI C F,LEE A,GRIGORYAN L,et al.Mechanisms of innate and adaptive immunity to the Pfizer‑BioNTech BNT162b2 vaccine[J]. Nature Immunology,2022,23 (4):543‑555. [20] WEBB C,IP S,BATHULA N V,et al. Current status and future perspectives on mRNA drug manufacturing[J].Molecular Pharmaceutics, 2022, 19 (4) :1047‑1058. [21]MASCOLA J R,FAUCI A S.Novel vaccine technologies for the 21st century[J].Nature Reviews Immunology,2020,20(2):87‑88. [22]FANG E,LIU X H,LI M,et al.Advances in COVID‑19 mRNA vaccine development[J].Signal Transduction and Targeted Therapy,2022,7(1):94. [23]HASSINEI H. COVID‑19 vaccines and variants of concern:A review[J].Reviews in Medical Virology 2022,32(4):e2313. [24]THOMAS S J,MOREIRA E D,KITCHIN N,et al.Safety and efficacy of the BNT162b2 mRNA COVID‑19 vaccine through 6 months[J].The New England Journal of Medicine,2021,385(19) :1761‑1773. [25]LEAV B,STRAUS W,WHITE P,et al.A Brighton Collaboration standardized template with key considerations for a benefit/risk assessment for the Moderna COVID‑19 vaccine (mRNA‑1273)[J].Vaccine,2022,40(35):5275‑5293. [26]XU H,ZHENG X N,ZHANG S Y,et al.Tumor antigens and immune subtypes guided mRNA vaccine development for kidney renal clear cell carcinoma[J].Molecular Cancer,2021,20(1):159. [27]GUPTA M,WAHI A,SHARMA P,et al.Recent advances in cancer vaccines:Challenges,achievements,and futuristic prospects[J].Vaccines,2022,10(12):2011. [28]XU S Q,YANG K P,LI R,et al.mRNA vaccine Era:Mechanisms,drug platform and clinical prospection[J].International Journal of Molecular Sciences,2020,21 (18):6582. [29]GRUDZIEN‑NOGALSKA E,JEMIELITY J,KOWALSKA J,et al.Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells[J].RNA,2007,13(10):1745‑1755. [30]KOZARSKI M,DRAZKOWSKA K,BEDNARCZYK M,et al.Towards superior mRNA caps accessible by click chemistry:Synthesis and translational properties of triazole‑bearing oligonucleotide cap analogs[J].RSC Advances,2023,13(19):12809‑12824. [31]LIANG Y J ,HUANG L P,LIU T C.Development and delivery systems of mRNA vaccines[J].Frontiers in Bioengineering and Biotechnology,2021,9:718753. [32]SONENBERG N,HINNEBUSCH A G.Regulation of translation initiation in eukaryotes:Mechanisms and biological targets[J].Cell,2009,136(4):731‑745. [33]MARQUES R,LACERDA R,LUÍSA ROMÃO.Internal ribosome entry site(IRES)‑mediated translation and its potential for novel mRNA‑based therapy development[J].Biomedicines,2022,10(8):1865. [34]TAN X H,WAN Y H.Enhanced protein expression by internal ribosomal entry site‑driven mRNA translation as a novel approach for in vitro loading of dendritic cells with antigens[J].Human Immunology,2008,69 (1):32‑40. [35]KO H L,PARK H J,KIM J,et al.Development of an RNA expression platform controlled by viral internal ribosome entry sites[J].Journal of Microbiology and Biotechnology,2019,29(1):127‑140. [36]YOU H,JONES M K,GORDON C A,et al.The mRNA vaccine technology era and the future control of parasitic infections[J].Clinical Microbiology Reviews,2023,36(1):e0024121. [37]KIM S C,SEKHON S S,SHIN W R,et al.Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency[J].Molecular and Cellular Toxicology,2022,18(1):1‑8. [38]TO K K W,CHO W C S.An overview of rational design of mRNA‑based therapeutics and vaccines[J].Expert Opinion on Drug Discovery,2021,16(11):1307‑1317. [39]GEBRE M S,RAUCH S,ROTH N,et al.Optimization of non‑coding regions for a non‑modified mRNA COVID‑19 vaccine[J].Nature,2022,601:410‑414. [40]JACQUET A.Nucleic acid vaccines and CpG oligodeoxynucleotides for allergen immunotherapy[J].Current Opinion in Allergy and Clinical Immunology,2021,21(6):569‑575. [41]VERBEKE R,LENTACKER I,DE SMEDT S C,et al.The dawn of mRNA vaccines:The COVID‑19 case[J].Journal of Controlled Release,2021,333:511‑520. [42]CORBETT K S,EDWARDS D K,LEIST S R,et al.SARS‑CoV‑2 mRNA vaccine design enabled by prototype pathogen preparedness[J].Nature,2020,586:567‑571. [43]PAPI M,POZZI D,PALMIERI V,et al.Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID‑19 using 3D bioprinting[J].Nano Today,2022,43:101403. [44]PARDI N,HOGAN M J,PELC R S,et al.Zika virus protection by a single low‑dose nucleoside‑modified mRNA vaccination[J].Nature,2017,543:248‑251. [45]BERNARD M C,BAZIN E,PETIOT N,et al.The impact of nucleoside base modification in mRNA vaccine is influenced by the chemistry of its lipid nanoparticle delivery system[J].Mol Ther Nucleic Acids,2023,32:794‑806. [46]ZHANG G,TANG T Y,CHEN Y F,et al.mRNA vaccines in disease prevention and treatment[J].Signal Transduction and Targeted Therapy,2023,8 (1):365. [47]SAHAY G,QUERBES W,ALABI C,et al.Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling[J].Nature Biotechnology,2013,31:653‑658. [48]HOU X C,ZAKS T,LANGER R,et al.Lipid nanoparticles for mRNA delivery[J].Nature Reviews Materials,2021,6(12):1078‑1094. [49]EYGERIS Y,GUPTA M,KIM J,et al. Chemistry of lipid nanoparticles for RNA delivery[J].Accounts of Chemical Research,2022,55(1):2‑12. [50]GILBERT P B,MONTEFIORI D C,MCDERMOTT A B, et al.Immune correlates analysis of the mRNA‑1273 COVID‑19 vaccine efficacy clinical trial[J].Science,2022,375(6576):43‑50. [51]DORRAJ G,CARRERAS J J,NUNEZ H,et al.Lipid nanoparticles as potential gene therapeutic delivery systems for oral administration[J].Current Gene Therapy,2017,17(2):89‑104. [52]CHEN J J,YE Z F,HUANG C F,et al.Lipid nanoparticle‑mediated lymph node‑targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response[J].Proceedings of the National Academy of Sciences of the United States of America,2022,119 (34):e2207841119. [53]GRUNWITZ C,SALOMON N,VASCOTTO F,et al.HPV16 RNA‑LPX vaccine mediates complete regression of aggressively growing HPV‑positive mouse tumors and establishes protective T cell memory[J].Oncoimmunology,2019,8(9):e1629259. [54]SAMARIDOU E,HEYES J,LUTWYCHE P.Lipid nanoparticles for nucleic acid delivery:Current perspectives[J].Advanced Drug Delivery Reviews,2020,154/155:37‑63. [55]ZHAO Z W,ZHENG L Y,CHEN W Q,et al.Delivery strategies of cancer immunotherapy:Recent advances and future perspectives[J].Journal of Hematology and Oncology,2019,12(1):126. [56]PIPPA N,GAZOULI M,PISPAS S.Recent advances and future perspectives in polymer‑based nanovaccines[J].Vaccines,2021,9(6):558.
[57]YANG W Q,MIXICH L,BOONSTRA E,et al.Polymer‑based mRNA delivery strategies for advanced therapies[J].Advanced Healthcare Materials,2023,12 (15):e2202688. [59]RANA I,OH J,BAIG J,et al.Nanocarriers for cancer nano‑immunotherapy[J].Drug Delivery and Translational Research,2023,13(7):1936‑1954. [60]SHARTOUNY J R,LOWEN A C.Message in a bottle:mRNA vaccination for influenza[J].Journal of General Virology,2022,103(7):001765. [61]NAIK R,PEDEN K.Regulatory considerations on the development of mRNA vaccines[J].Current Topics in Microbiology and Immunology,2022,440:187‑205. [62]KUMAR A,BLUM J,LET T,et al.The mRNA vaccine development landscape for infectious diseases[J].Nature Reviews Drug Discovery,2022,21(5) :333‑334. [63]NITIKA,WEI J,HUI A M.The development of mRNA vaccines for infectious diseases:Recent updates[J].Infection and Drug Resistance,2021,14:5271‑5285. [64]FREDRIKA H,ALBERTO C,RODRIGO A C,et al.Unmodified rabies mRNA vaccine elicits high cross‑neutralizing antibody titers and diverse B cell memory responses[J].Nature Communications,2023,14(1):3713. [65]LI J L,LIU Q,LIU J,et al.An mRNA‑based rabies vaccine induces strong protective immune responses in mice and dogs[J]. Virology Journal,2022,19(1):184.
[66]董金杰,王会宝,王凡等.基于猪口蹄疫O型病毒结构蛋白VP1基因的mRNA疫苗制备及免疫活性研究[J].农业生物技术学报,2022,30(6):1219‑1227.
[67]IDRC‑International Development Research Centre(idrc‑crdi. ca).Development of a cross‑protective synthetic RNA vaccine against foot and mouth disease(FMD)[EB/OL].(2022‑03‑03)[2023‑07‑22].https://idrc‑crdi.ca/en/project/development‑cross‑protective‑synthetic‑rna‑vaccine‑against‑foot‑and‑mouth‑diseasefmd. [69]CHIVUKULA S,PLITNIK T,TIBBITTS T,et al.Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza[J].NPJ Vaccines,2021,6(1):153. [70]LEE I T,NACHBAGAUER R,ENSZ D,et al.Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent,mRNA‑based seasonal influenza vaccine(mRNA‑1010)in healthy adults:Interim analysis[J].Nature Communications,2023,14(1):3631. [71] ClinicalTrials. gov.A Study to evaluate the safety and immunogenicity of a single dose of H1ssF‑3928 mRNA‑LNP in healthy adults[EB/OL].[2023‑08‑10].https://classic.clinicaltrials.gov/ct2/show/NCT05755620. [72]AREVALO C P,BOLTON M J,SAGE V L,et al.Amultivalent nucleoside‑modified mRNA vaccine against all known influenza virus subtypes[J].Science,2022,378:899‑904. [73]LE T,SUN C,CHANG J T,et al.mRNA vaccine development for emerging animal and zoonotic diseases[J].Viruses,2022,14(2):401. [74]ZHANG M L,SUN J,LI M,et al.Modified mRNA‑LNP vaccines confer protection against experimental DENV‑2 infection in mice[J].Molecular Therapy Methods and Clinical Development,2020,18:702‑712. [75]USDA Cooperative Agreement.Development of a self‑amplifying mRNA vaccine for african swine fever and classical swine fever—Genvax technologies(usda.gov)[EB/OL]. (2021‑07‑01)[2023‑09‑06]. https://portal.nifa.usda.gov/web/crisprojectpages/0440187‑development‑of‑a‑self‑amplifying‑mrna‑vaccine‑forafrican‑swine‑fever‑and‑classical‑swine‑fever.html. [76]LI Z Y,CHEN W X,QIU Z L,et al.African swine fever virus:A review[J].Life(Basel),2022,12(8):1255. [77]CHEN W Y,ZHAO D M,HE X J,et al.A seven‑gene‑deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs[J].Science China Life Sciences,2020,63(5):623‑634. [78]BORCA M V,RAMIREZ‑MEDINA E,SILVA E,et al.Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic eurasia strain[J].Journal of Virology,2020,94(7):e02017‑19.
[79]LIU Y N,XIE Z H,LI Y,et al.Evaluation of an I177L gene‑based five‑gene‑deleted African swine fever virus as a live attenuated vaccine in pigs[J].Emerging Microbes and Infections,2023,12(1):2148560. |
[1] | 屈小天, 王雅楠, 许倩茹, 李雪洋, 张申立, 张二芹, 张改平. H5N1 亚型禽流感病毒HA蛋白在水稻胚乳中的表达及其纯化[J]. 河南农业科学, 2024, 53(3): 125-132. |
[2] | 魏蔷, 李青梅, 金前跃, 宋亚鹏, 白怡霖, 张改平. 鸡减蛋综合征病毒中和性单克隆抗体的制备、鉴定及在双抗体夹心ELISA 中的应用[J]. 河南农业科学, 2024, 53(2): 128-135. |
[3] | 宋亚鹏, 孙亚宁, 刘琳, 杨继飞, 李新生, 魏蔷, 张改平. 减蛋综合征病毒抗体胶体金免疫层析试纸条的研制及初步应用[J]. 河南农业科学, 2024, 53(1): 125-132. |
[4] | 方剑玉, 张青娴, 郎利敏, 徐彬, 王改利, 席燕燕, 冯现明, 王克领, 李绍钰. 猪IFN-α8 的原核表达及抗猪繁殖与呼吸综合征病毒活性研究[J]. 河南农业科学, 2023, 52(9): 141-147. |
[5] | 孙雪珂, 丁培阳, 王思桥, 刘思源, 李明慧, 常泽杰, 陈艺兰, 李瑞琪, 张改平. 稳定表达猪δ 冠状病毒S1 蛋白CHO细胞系的构建与鉴定[J]. 河南农业科学, 2023, 52(6): 131-138. |
[6] | 李杨, 康俊港, 马占飞, 王亚博, 赵博伟, 姜国均. 中药渣饲喂对蚯蚓生长性能及消化酶活性的影响[J]. 河南农业科学, 2023, 52(5): 156-161. |
[7] | 张小霞, 杨艳青, 王秋云, 杜俊阳, 曹瀚文, 梁振普. 猪繁殖与呼吸综合征病毒感染Marc-145 细胞的长链非编码RNA 和mRNA 转录组分析[J]. 河南农业科学, 2023, 52(4): 127-136. |
[8] | 李鹏, 孙延举, 王寅彪, 金前跃, 梁晓晓, 银梅, 王选年, 刘兴友, 王利平. 猪圆环病毒3 型TB Green Ⅱ实时荧光定量PCR检测方法的建立和应用[J]. 河南农业科学, 2023, 52(3): 135-142. |
[9] | 赵文影, 张云静, 白小飞, 孙玉洁, 郭玲花, 黄柏成, 田克恭. 猪细小病毒BJ2 株的分离鉴定及全基因组序列分析[J]. 河南农业科学, 2023, 52(2): 136-144. |
[10] | 王伟东, 滕蔓, 郑鹿平, 刘金玲, 张文凯, 李林燕, 张志会, 樊剑鸣, 罗俊. miR-M11 基因编辑对马立克病病毒体外复制的影响[J]. 河南农业科学, 2023, 52(1): 134-143. |
[11] | 睢攀博, 徐菲菲, 梁冠达, 杜海利, 郎家抒, 李俊强. 绵羊源十二指肠贾第虫和隐孢子虫的分子鉴定[J]. 河南农业科学, 2022, 51(12): 147-152. |
[12] | 陈维聪, 刘运超, 周川杰, 杨苏珍, 魏蔷, 柴书军, 张改平. 猪流行性腹泻病毒S1 蛋白的免疫原性评估[J]. 河南农业科学, 2022, 51(11): 127-134. |
[13] | 王俊娜, 李凌薇, 王秋霞, 师雯, 张新, 刘兴友, 姜金庆, 裴大伟. 河南省新乡市禽腺病毒的分离鉴定[J]. 河南农业科学, 2022, 51(5): 133-139. |
[14] | 李中波, 侯强红, 李晖, 舒鸣. 湘西地区吕氏泰勒虫的单倍型多样性及种系发育关系分析[J]. 河南农业科学, 2022, 51(4): 130-137. |
[15] | 郭占达, 杜季梅, 郭子仪, 王新港, 张彦华. 2020 年河南省猪繁殖与呼吸综合征病毒的分子流行病学调查及ORF5 基因变异分析[J]. 河南农业科学, 2022, 51(3): 146-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||