河南农业科学 ›› 2024, Vol. 53 ›› Issue (5): 1-9.DOI: 10.15933/j.cnki.1004-3268.2024.05.001
王东辉1,王奥轩1,何长海2,刘志豪1,石永春1,王燃1,王潇然1
收稿日期:
2023-12-22
出版日期:
2024-05-15
发布日期:
2024-06-06
通讯作者:
王潇然(1983-),男,河南郑州人,副教授,博士,主要从事植物生物化学与分子生物学研究。E-mail:xiaoranwang@henau.edu.cn
王燃(1983-),男,河南郑州人,副教授,博士,主要从事植物合成生物学研究。E-mail:wangran@henau.edu.cn
作者简介:
王东辉(1996-),男,河南周口人,在读硕士研究生,研究方向:植物合成生物学。E-mail:donghuiwang1996@126.com
基金资助:
WANG Donghui1,WANG Aoxuan1,HE Changhai2,LIU Zhihao1,SHI Yongchun1,WANG Ran1,WANG Xiaoran1
Received:
2023-12-22
Published:
2024-05-15
Online:
2024-06-06
摘要: 优良种质资源是粮食安全的重要保证,传统育种技术存在周期长、工作量庞大等问题。随着生物学与计算机技术的深度融合,针对作物关键基因进行定向优化的酶的理性设计,为更大限度挖掘优质基因资源奠定了基础,进一步与基因编辑及转基因技术相结合,成为分子育种技术探索中的重要方向之一。阐述了分子对接、分子动力学模拟、结合自由能评价等酶的理性设计常用方法,综述了酶的理性设计在提高作物品质、抗逆性和生物量方面的应用进展,并对未来的前景进行展望,以期为作物育种新技术的开发和利用提供参考。
中图分类号:
王东辉, 王奥轩, 何长海, 刘志豪, 石永春, 王燃, 王潇然. 酶的理性设计在作物育种中的应用进展与前景展望[J]. 河南农业科学, 2024, 53(5): 1-9.
WANG Donghui, WANG Aoxuan, HE Changhai, LIU Zhihao, SHI Yongchun, WANG Ran, WANG Xiaoran. Progress on Application of Rational Design of Enzyme in Crop Breeding and Prospect[J]. Journal of Henan Agricultural Sciences, 2024, 53(5): 1-9.
[1]BURKI T.Food security and nutrition in the world[J].The Lancet Diabetes & Endocrinology,2022,10(9):622. [2]BEHNASSI M,EL HAIBA M.Implications of the Russia‑Ukraine war for global food security[J].Nature Human Behaviour,2022,6:754‑755. [3]WANG Y Q,DEMIRER G S.Synthetic biology for plant genetic engineering and molecular farming[J].Trends in Biotechnology,2023,41(9):1182‑1198. [4]PIXLEY K V,FALCK‑ZEPEDA J B,PAARLBERG R L,et al.Genome‑edited crops for improved food security of smallholder farmers[J].Nature Genetics,2022,54:364‑367. [5]ARNOLD F H. Directed evolution:Bringing new chemistry to life[J].Angewandte Chemie,2018,57(16):4143‑4148. [6]CHEN K,ARNOLD F H. Tuning the activity of an enzyme for unusual environments:Sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(12):5618‑5622. [7]WILSON R H,ALONSO H,WHITNEY S M. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth[J]. Scientific Reports,2016,6:22284. [8]HART J E,SULLIVAN S,HERMANOWICZ P,et al.Engineering the phototrop in photocycle improves photoreceptor performance and plant biomass production[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(25) :12550‑12557. [9]LUTZ S. Beyond directed evolution: Semi‑rational protein engineering and design[J]. Current Opinion in Biotechnology,2010,21(6):734‑743. [10]CHENG F,ZHU L L,SCHWANEBERG U. Directed evolution 2. 0:Improving and deciphering enzyme properties[J]. Chemical Communications,2015,51(48):9760‑9772. [11]REETZ M T,BOCOLA M,CARBALLEIRA J D,et al.Expanding the range of substrate acceptance of enzymes:Combinatorial active‑site saturation test[J].Angewandte Chemie,2005,44(27):4192‑4196. [12]MA Y H,CHEN Q W,WANG Y Y,et al.Heteromerization of short‑chain trans‑prenyltransferase controls precursor allocation within a plastidial terpenoid network[J]. Journal of Integrative Plant Biology,2023,65(5):1170‑1182. [13]DONG C,QU G,GUO J G,et al.Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum[J].Science Bulletin,2022,67(3):315‑327. [14]LIU Y,YAN Z H,LU X Y,et al. Improving the catalytic activity of isopentenyl phosphate kinase through protein coevolution analysis[J].Scientific Reports,2016,6:24117. [15]HUANG J Y,LIN Q P,FEI H Y,et al. Discovery of deaminase functions by structure‑based protein clustering[J].Cell,2023,186(15):3182‑3195. [16]ARNOLD F H. Combinatorial and computational challenges for biocatalyst design[J].Nature,2001,409:253‑257. [17]LI X L,CONG Y L,MA M Z,et al.An energy optimization strategy based on the perfect conformation of prolyl endopeptidase for improving catalytic efficiency[J].Journal of Agricultural and Food Chemistry,2020,68(18):5129‑5137. [18]LI J H,LIU G L,ZHEN Z Y,et al.Molecular docking for ligand‑receptor binding process based on heterogeneous computing[J]. Scientific Programming,2022,2022:9197606. [19]ALLEN W J,BALIUS T E,MUKHERJEE S,et al.DOCK 6:Impact of new features and current docking performance[J]. Journal of Computational Chemistry,2015,36(15):1132‑1156. [20]MORRIS G M,HUEY R,LINDSTROM W,et al.AutoDock4 and AutoDockTools4:Automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry,2009,30(16):2785‑2791. [21]TROTT O,OLSON A J. AutoDock Vina:Improving the speed and accuracy of docking with a new scoring function,efficient optimization,and multithreading[J].Journal of Computational Chemistry,2010,31(2):455‑461. [22]HUANG L,ZHANG W W,LI X H,et al. Point mutations in the catalytic domain disrupt cellulose synthase(CESA6) vesicle trafficking and protein dynamics[J].The Plant Cell,2023,35(7):2654‑2677. [23]DAGGETT V.Protein folding‑simulation[J].Chemical Reviews,2006,106(5):1898‑1916. [24]SONG S Y,JIN R T,CHEN Y F,et al. The functional evolution of architecturally different plant geranyl diphosphate synthases from geranylgeranyl diphosphate synthase[J]. The Plant Cell,2023,35(6):2293‑2315. [25]KOLLMAN P A,MASSOVA I,REYES C,et al.Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models[J]. Accounts of Chemical Research,2000,33(12):889‑897. [26]BU L T,BECKHAM G T,SHIRTS M R,et al.Probing carbohydrate product expulsion from a processive cellulase with multiple absolute binding free energy methods[J].Journal of Biological Chemistry,2011,286(20):18161‑18169. [27]PANDYA P N,KUMAR S P,BHADRESHA K,et al.Identification of promising compounds from curry tree with cyclooxygenase inhibitory potential using a combination of machine learning,molecular docking,dynamics simulations and binding free energy calculations[J].Molecular Simulation,2020,46(11):812‑822. [28]GALILI G,GALILI S,LEWINSOHN E,et al.Genetic,molecular,and genomic approaches to improve the value of plant foods and feeds[J].Critical Reviews in Plant Sciences,2002,21(3):167‑204. [29]FERNIE A R,TADMOR Y,ZAMIR D. Natural genetic variation for improving crop quality[J].Current Opinion in Plant Biology,2006,9(2):196‑202. [30]FERNIE A R,TRETHEWEY R N,KROTZKY A J,et al.Metabolite profiling:From diagnostics to systems biology[J].Nature Reviews Molecular Cell Biology,2004,5:763‑769. [31]CAI Y H,BHUIYA M W,SHANKLIN J,et al.Engineering a monolignol 4‑O‑methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol[J]. Journal of Biological Chemistry,2015,290(44):26715‑26724. [32]HERRERA D P, CHÁNIQUE A M,MARTÍNEZ‑MÁRQUEZ A,et al.Rational design of resveratrol O‑methyltransferase for the production of pinostilbene[J].International Journal of Molecular Sciences,2021,22(9):4345. [33]ZHANG S,LI C,GILBERT R G,et al.Understanding the binding of starch fragments to granule‑bound starch synthase[J]. Biomacromolecules,American Chemical Society,2021,22(11):4730‑4737. [34]FEDOROFF N V,BATTISTI D S,BEACHY R N,et al.Radically rethinking agriculture for the 21st century[J].Science,2010,327:833‑834. [35]JAN R,ASAF S,NUMAN M,et al. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions[J].Agronomy,2021,11(5):968. [36]HAN Y,LI X J. Current progress in research focused on salt tolerance in Vitis vinifera L[J].Frontiers in Plant Science,2024,15:1353436. [37]PANDIAN B A,SATHISHRAJ R,DJANAGUIRAMAN M,et al. Role of cytochrome P450 enzymes in plant stress response[J]. Antioxidants,2020,9(5):454. [38]BRAVO A,LIKITVIVATANAVONG S,GILL S S,et al.Bacillus thuringiensis:A story of a successful bioinsecticide[J].Insect Biochemistry and Molecular Biology,2011,41(7):423‑431. [39]MAQSOOD S,AHMAD M,KHAN I H,et al. Evaluation of transgenic cotton cultivars containing cry toxins from Bacillus thuringiensis against thrips[J].Plant Protection,2022,6(2):161‑165. [40]HARDKE J T,LEONARD B R,HUANG F N,et al.Damage and survivorship of fall armyworm(Lepidoptera:Noctuidae) on transgenic field corn expressing Bacillus thuringiensis Cry proteins[J].Crop Protection,2011,30(2):168‑172. [41]LI C Y,WANG J Y,LING F,et al.Application and development of Bt insect resistance genes in rice breeding[J].Sustainability,2023,15(12):9779. [42]MANDAL C C, GAYEN S, BASU A, et al.Prediction‑based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects[J].Protein Engineering,Design and Selection,2007,20(12):599‑606. [43]NICOLIA A,FERRADINI N,MOLLA G,et al.Expression of an evolved engineered variant of a bacterial glycine oxidase leads to glyphosate resistance in alfalfa[J].Journal of Biotechnology,2014,184:201‑208. [44]LIU Y,ZHANG X,YUAN G X,et al.A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(44):e2110751118. [45]DONG C,WANG Z W,QIN L L,et al.Overexpression of geranyl diphosphate synthase 1(NnGGPPS1)from Nelumbo nucifera enhances carotenoid and chlorophyll content and biomass[J].Gene,2023,881:147645. [46]ZHOU F,WANG C Y,GUTENSOHN M,et al. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(26):6866‑6871. [47]RUIZ‑SOLA M Á,COMAN D,BECK G,et al.Arabidopsis geranylgeranyl diphosphate synthase 11 is a hub isozyme required for the production of most photosynthesis‑related isoprenoids [J]. The New Phytologist,2016,209(1):252‑264. [48]WANG Q,HUANG X Q,CAO T J,et al. Heteromeric geranylgeranyl diphosphate synthase contributes to carotenoid biosynthesis in ripening fruits of red pepper(Capsicum annuum var. conoides)[J].Journal of Agricultural and Food Chemistry,2018,66(44):11691‑11700. [49]ALI M,MIAO L,SOUDY F A,et al.Overexpression of terpenoid biosynthesis genes modifies root growth and nodulation in soybean(Glycine max)[J]. Cells,2022,11(17):2622. [50]BARJA M V,RODRIGUEZ‑CONCEPCION M.Plant geranylgeranyl diphosphate synthases:Every(gene)family has a story[J]. aBIOTECH,2021,2(3):289‑298. [51]TRUDEAU D L,EDLICH‑MUTH C,ZARZYCKI J,et al.Design and in vitro realization of carbon‑conserving photorespiration[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(49):E11455‑E11464. [52]ZHOU Y,GUNN L H,BIRCH R,et al. Grafting Rhodobacter sphaeroides with red algae Rubisco to accelerate catalysis and plant growth[J]. Nature Plants,Nature Publishing Group,2023,9(6):978‑986. [53]邵洁,刘海利,王勇.植物合成生物学的现在与未来[J].合成生物学,2020,1(4):395‑412. SHAO J,LIU H L,WANG Y. Present and future of plant synthetic biology[J].Synthetic Biology Journal,2020,1(4):395‑412. [54]ENDY D. Foundations for engineering biology[J].Nature,2005,438:449‑453. [55]KEBEISH R,NIESSEN M,THIRUVEEDHI K,et al.Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana[J].Nature Biotechnology,2007,25:593‑599. [56]GE X Y,WANG P,WANG Y,et al.Development of an eco‑friendly pink cotton germplasm by engineering betalain biosynthesis pathway[J].Plant Biotechnology Journal,2023,21(4):674‑676. [57]SOUTH P F,CAVANAGH A P,LIU H W,et al.Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field[J]. Science,2019,363(6422):eaat9077. [58] WADA N,UETA R,OSAKABE Y,et al.Precision genome editing in plants:State‑of‑the‑art in CRISPR/Cas9‑based genome engineering[J].BMC Plant Biology,2020,20(1):234. [59]SHEN B,ZHANG W S,ZHANG J,et al.Efficient genome modification by CRISPR‑Cas9 nickase with minimal off‑target effects[J]. Nature Methods,2014,11:399‑402. [60]CONG L,RAN F A,COX D,et al. Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819‑823. [61]KOMOR A C,KIM Y B,PACKER M S,et al.Programmable editing of a target base in genomic DNA without double‑stranded DNA cleavage[J].Nature,2016,533:420‑424. [62]ADLI M.The CRISPR tool kit for genome editing and beyond[J].Nature Communications,2018,9:1911. [63]ANZALONE A V,RANDOLPH P B,DAVIS J R,et al.Search‑and‑replace genome editing without double‑strand breaks or donor DNA[J].Nature,2019,576:149‑157. [64]TANG X,SRETENOVIC S,REN Q R,et al. Plant prime editors enable precise gene editing in rice cells[J].Molecular Plant,2020,13(5):667‑670. [65]LIN Q P,ZONG Y,XUE C X,et al.Prime genome editing in rice and wheat[J].Nature Biotechnology,2020,38:582‑585. [66]JIANG Y Y,CHAI Y P,LU M H,et al.Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize[J].Genome Biology,2020,21(1):257. [67]LU Y M,TIAN Y F,SHEN R D,et al.Precise genome modification in tomato using an improved prime editing system[J]. Plant Biotechnology Journal,2021,19(3):415‑417. [68]MOLLA K A,SRETENOVIC S,BANSAL K C,et al.Precise plant genome editing using base editors and prime editors[J]. Nature Plants,2021,7:1166‑1187. [69]STEFANOVA L,KOSTADINOVA S,ATANASSOV A,et al. Transgenic techniques for plant improvement:A brief overview[M]//RAINA A,WANI M R,LASKAR R A,et al. Advanced crop improvement. Cham:Springer,2023:95‑109. [70]ALTPETER F,SPRINGER N M,BARTLEY L E,et al.Advancing crop transformation in the era of genome editing[J].The Plant Cell,2016,28(7):1510‑1520. [71]WANG K,SHI L,LIANG X N,et al.The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation[J].Nature Plants,2022,8:110‑117. [72]CHEN L,CAI Y P,LIU X J,et al.Improvement of soybean Agrobacterium‑mediated transformation efficiency by adding glutamine and asparagine into the culture media[J].International Journal of Molecular Sciences,2018,19(10):3039. [73]CUNNINGHAM F J,GOH N S,DEMIRER G S,et al.Nanoparticle‑mediated delivery towards advancing plant genetic engineering[J].Trends in Biotechnology,2018,36(9):882‑897. [74]WU C F,LIN J S,SHAW G C,et al. Acid‑induced type Ⅵ secretion system is regulated by ExoR‑ChvG/ChvI signaling cascade in Agrobacterium tumefaciens[J].PLoS Pathogens,2012,8(9):e1002938. [75]LIN J S,MA L S,LAI E M.Systematic dissection of the agrobacterium type Ⅵ secretion system reveals machinery and secreted components for subcomplex formation[J].PLoS One,2013,8(7):e67647. [76]WOO J W,KIM J,KWON S I,et al. DNA‑free genome editing in plants with preassembled CRISPR‑Cas9 ribonucleoproteins[J].Nature Biotechnology,2015,33:1162‑1164. [77]SVITASHEV S,YOUNG J K,SCHWARTZ C,et al.Targeted mutagenesis,precise gene editing,and site‑specific gene insertion in maize using Cas9 and guide RNA[J].Plant Physiology,2015,169(2):931‑945. |
[1] | 黄秋月, 何建清, 刘海鑫, 聂子芳, 徐东, 潘长漭. 园林废弃物木质纤维素高效降解真菌的筛选与鉴定[J]. 河南农业科学, 2024, 53(5): 101-111. |
[2] | 杨伟克, 张露斯, 范永慧, 刘增虎, 唐芬芬. BmNPV 侵染对家蚕β-N-乙酰葡萄糖苷酶活性及其相关基因转录水平的影响[J]. 河南农业科学, 2024, 53(5): 150-156. |
[3] | 李守强, 田甲春, 葛霞, 李梅, 程建新, 李玉梅, 田世龙. 不同保鲜袋包装对雾培马铃薯微型种薯贮藏保鲜效果的影响[J]. 河南农业科学, 2024, 53(4): 152-160. |
[4] | 张尹强, 郝建秀, 赵远征, 王东, 周洪友. 棘孢木霉PT-29 与枯草芽孢杆菌S-16 共培养对马铃薯枯萎病的防控作用[J]. 河南农业科学, 2024, 53(3): 95-102. |
[5] | 刘亚军, 王文静, 李敏, 胡启国, 刘广卿, 孙喜云, 储凤丽. 甘薯不同轮作模式对土壤有机碳组分及碳转化酶活性的影响[J]. 河南农业科学, 2024, 53(2): 65-74. |
[6] | 孔凡丹, 周利军, 郑美玉, 张作合, 杨则已, 吴娟. 秸秆覆盖对黑土区土壤微生物量、酶活性及大豆产量的影响[J]. 河南农业科学, 2024, 53(1): 87-95. |
[7] | 余高, 陈芬, 田霞, 卢心, 滕明欢, 谢婉莹. 冬季覆盖对幼龄柑橘园土壤化学性质及酶活性的影响[J]. 河南农业科学, 2023, 52(9): 91-101. |
[8] | 王川艺, 黄红涛, 陈发波, 郑张飞, 方平. 胭脂萝卜RsCHS1 基因克隆及表达分析[J]. 河南农业科学, 2023, 52(9): 122-132. |
[9] | 潘勇, 吴巧茵, 李林林, 施友志, 谭再钰, 张娟, 王剑. 产多酚氧化酶菌株在改善雪茄烟叶品质中的应用研究[J]. 河南农业科学, 2023, 52(9): 173-180. |
[10] | 信龙飞, 娄闯, 冀保毅, 刘红云, 张艳玲. 干旱胁迫对桔梗光合作用和生理特性的影响[J]. 河南农业科学, 2023, 52(8): 69-77. |
[11] | 王敬赫, 胡庆丰, 刘婕, 程耀波, 严雪溶, 王健, 惠爱玲, 张文成. 银杏叶渣中多糖和黄酮的综合提取及其抗氧化活性研究[J]. 河南农业科学, 2023, 52(8): 171-180. |
[12] | 李鑫, 张美珍, 郑翘楚, 刘权, 黄玉兰, 殷奎德. 盐碱胁迫下产ACC 脱氨酶促生菌对绿豆插条生根的作用[J]. 河南农业科学, 2023, 52(7): 52-59. |
[13] | 刘雪松, 薛沾枚, 杨庆稳, 张艳, 孟维珊, 王爽, 陈曦, 杨旭东, 罗天瑶, 朱庆贺, 钟鹏. 响应面优化畜禽归芪益母汤酶解提取工艺[J]. 河南农业科学, 2023, 52(7): 125-135. |
[14] | 靳鹏, 和子涵, 武婧玉, 贾一然, 张晓彤, 张建新. 1 株光合细菌的分离鉴定、培养基优化及脱氮特性研究[J]. 河南农业科学, 2023, 52(7): 136-143. |
[15] | 李杨, 康俊港, 马占飞, 王亚博, 赵博伟, 姜国均. 中药渣饲喂对蚯蚓生长性能及消化酶活性的影响[J]. 河南农业科学, 2023, 52(5): 156-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||