河南农业科学 ›› 2021, Vol. 50 ›› Issue (1): 113-120.DOI: 10.15933/j.cnki.1004-3268.2021.01.014

• 园艺 • 上一篇    下一篇

基于无机营养的26份葡萄种质资源耐铝性综合评价

张永福,徐仕琴,荆赞革,莫丽玲,黄丽   

  1. (昆明学院 农学与生命科学学院,云南 昆明 650214)
  • 收稿日期:2020-05-20 出版日期:2021-01-15 发布日期:2021-01-15
  • 作者简介:张永福(1981-),男,云南弥勒人,教授,博士,主要从事果树种质资源与遗传育种研究。E-mail:123017360@qq.com
  • 基金资助:
    云南省高校高原特色果树优异种质资源挖掘与新品种选育科技创新团队项目;云南省应用基础研究计划项目(2017FD087);国家自然科学基金项目(31660559)

Comprehensive Evaluation of Aluminum Tolerance of 26 Grape Germplasms Based on Inorganic Nutrition

ZHANG Yongfu,XU Shiqin,JING Zange,MO Liling,HUANG Li   

  1. (School of Agriculture and Life Sciences,Kunming University,Kunming 650214,China)
  • Received:2020-05-20 Published:2021-01-15 Online:2021-01-15

摘要: 为防止或降低铝毒胁迫对葡萄的危害,从无机营养方面寻找一种有效的葡萄耐铝性鉴定方法,并获得耐铝基因型。以不同来源的26份葡萄种质资源为材料,通过无土栽培,测定铝胁迫条件下叶片N、P、K、Ca、Mg、Fe、Mn、Zn、B、Mo、Cu、Al等12种元素含量,以耐铝系数作为耐铝性鉴定的指标,采用主成分分析、隶属函数和聚类分析等方法对葡萄不同种质资源的耐铝性进行综合评价。结果表明,铝胁迫下,葡萄不同种质资源的无机营养元素含量差异显著;从相关性分析中发现,各元素的耐铝系数间均存在一定的相关性,说明所提供的信息有重叠,使用单一元素来评价葡萄不同种质资源的耐铝性是不准确的;对12个单项指标进行主成分分析后,得到5个代表葡萄耐铝性85.095%的原始数据信息量的综合指标;再利用这5个综合指标的贡献率算出各自的隶属函数值,通过加权得出各种质资源耐铝性综合评价值(D值)。对D值进行聚类分析,将26份葡萄种质划分为3类,小叶葡萄、红地球、黑玫瑰等7份种质耐铝性较强,泰山-1、黑提无极、水晶等10份种质耐铝性中等,通化-3、高山-2、贝达等9份种质耐铝性较弱。用各元素的耐铝系数作为自变量,D值作为因变量,进行逐步回归并获得最优回归方程,26份葡萄种质资源的D值与耐铝预测值之间的相关性极显著,筛选出对葡萄耐铝性有显著影响的指标为K、Mg、Zn、B含量,可用作葡萄耐铝性鉴定指标。此方法既防止应用单一指标评价葡萄耐铝性的随机性和片面性,又揭示了葡萄耐铝相关性状与耐铝性的关系,所得评价结果更可靠。

关键词: 葡萄, 无机营养元素, 耐铝性, 主成分分析, 综合评价

Abstract: To prevent or reduce the harm of aluminum stress to grape,an effective identification method of aluminum tolerance from inorganic nutrition was searched, and aluminum tolerance genotype was obtained.The contents of 12 elements N,P,K,Ca,Mg,Fe,Mn,Zn,B,Mo,Cu and Al in leaves of 26 grape germplasm resources from different sources were determined under aluminum stress by soilless cultivation.Taking aluminum tolerance coefficient as the index of aluminum tolerance identification,principal component analysis, membership function and cluster analysis were used to evaluate the aluminum tolerance of different grape germplasm resources.The results showed that under aluminum stress,the contents of inorganic nutrient elements in different grape germplasm resources were significantly different.From the correlation analysis, it was found that there was a certain correlation between the aluminum tolerance coefficients of each element, which indicated that the information provided was overlapping,and it was inaccurate to use a single element to evaluate the aluminum tolerance of different grape germplasm resources.After principal component analysis of 12 single indexes,5 comprehensive indexes representing 85.095% of the original data information of grape aluminum tolerance were obtained.Then the contribution rate of these 5 comprehensive indexes was used to calculate their respective membership function values,and the comprehensive evaluation value(D value) of aluminum resistance of various germplasm resources was obtained by weighting. Based on the cluster analysis of D value,26 grape germplasm were divided into 3 categories, 7 cultivars, such as Vitis sinocinerea,Hongdiqiu,Heimeigui and so on,had strong aluminum tolerance;Taishan-1,Heitiwuji,Shuijing and so on,were moderately tolerant to aluminum;Tonghua-3,Gaoshan-2,Beta and other 9 germplasm resources were weakly tolerant to aluminum. Using the aluminum tolerance coefficient of each element as independent variable and D value as dependent variable,stepwise regression was carried out,and the optimal regression equation was obtained.The correlation between D value and predicted value of aluminum tolerance in 26 grape germplasm resources was very significant.The contents of K,Mn,Zn and B were selected as the identification index of aluminum tolerance of grape.This method not only could avoid the randomness and one-sidedness of evaluating aluminum tolerance of grape by using a single index,but also reflect the relationship between different aluminum tolerance related traits and aluminum tolerance in grape,so the evaluation results were more reliable.

Key words: Grape, Inorganic nutrient elements, Aluminum tolerance, Principal component analysis, Comprehensive evaluation

中图分类号: