| [1]MATÍAS L,LINARES J C,SÁNCHEZ‑MIRANDA Á,et al. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity[J].Global Change Biology,2017,23(10):4106‑4116.
[2]LIU J,MÖLLER M,PROVAN J,et al. Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspo[t J]. New Phytologist,2013,199(4):1093‑1108.
[3]JOCHUM G M,MUDGE K W,THOMAS R B. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax quinquefolius(Araliaceae)[J]. American Journal of Botany,2007,94(5):819‑826.
[4]巢清尘,李柔珂,崔童,等. 中国气候变化科学认识进展及未来展望:中国《第四次气候变化国家评估报告·第一部分》解读[J]. 中国人口·资源与环境,2023,33(1):74‑79.
CHAO Q C,LI R K,CUI T,et al. Scientific progress and future prospects in climate change:An interpretation of Part 1 of China’s Fourth National Assessment Report on Climate Change[J].China Population,Resources and Environment,2023,33(1):74‑79.
[5]YAO T D,XUE Y K,CHEN D L,et al.Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment:Multidisciplinary approach with observations,modeling,and analysis[J].Bulletin of the American Meteorological Society,2019,100(3):423‑444.
[6]MEYNARD C N,PIOU C,KAPLAN D M. A theoretical framework for upscaling species distribution models[J].Methods in Ecology and Evolution,2023,14(11):2888‑2899.
[7]吴艳,王洪峰,穆立蔷. 物种分布模型的研究进展与展望[J]. 高师理科学刊,2022,42(5):66‑70.
WU Y,WANG H F,MU L Q. Research progress and prospect of species distribution models[J]. Journal of Science of Teachers’College and University,2022,42(5):66‑70.
[8]GASTÓN A,GARCÍA‑VIÑAS J I. Modelling species distributions with penalised logistic regressions:A comparison with maximum entropy models[J].Ecological Modelling,2011,222(13):2037‑2041.
[9]PHILLIPS S J,ANDERSON R P,SCHAPIRE R E.Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling,2006,190(3/4):231‑259.
[10]CHEN C,ZHANG X J,WAN J Z,et al. Predicting the distribution of plant associations under climate change:A case study on Larix gmelinii in China[J].Ecology and Evolution,2022,12(10):e9374.
[11]PÉREZ‑GARCÍA N,FONT X,FERRÉ A,et al. Drastic reduction in the potential habitats for alpine and subalpine vegetation in the Pyrenees due to twenty‑first‑century climate change[J]. Regional Environmental Change,2013,13(6):1157‑1169.
[12]李雪,高广磊,孙桂丽,等. 基于MaxEnt预测梭梭和白梭梭在新疆的潜在适生区[J].西部林业科学,2021,50(1):145‑152.
LI X,GAO G L,SUN G L,et al. Potential suitable areas of Haloxylon ammodendron and Haloxylon persicum in Xinjiang based on MaxEnt[J]. Journal of West China Forestry Science,2021,50(1):145‑152.
[13]ZHANG K L,YAO L J,MENG J S,et al. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change[J]. Science of the Total Environment,2018,634:1326‑1334.
[14]赵淑杰,战杨,李玉新. 药用植物鹅绒藤的提取、药理及药用研究进展[J]. 中国兽药杂志,2021,55(1):73‑79.
ZHAO S J,ZHAN Y,LI Y X. Research progress on extraction,pharmacology and medicine of medicinal plant Cynanchum chinense R.Br.[J]. Chinese Journal of Veterinary Drug,2021,55(1):73‑79.
[15]黄平,周争道,张莉,等. 鹅绒藤属植物化学成分与药理活性研究进展[J]. 中药材,2018,41(9):2248‑2252.
HUANG P,ZHOU Z D,ZHANG L,et al. Research progress on the chemical composition and pharmacological activity of plants in the Cynanchum Linn.[J].Journal of Chinese Medicinal Materials,2018,41(9):2248‑2252.
[16]WU T W,LU Y X,FANG Y J,et al. The Beijing climate center climate system model(BCC‑CSM):The main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development,2019,12(4):1573‑1600.
[17]景丞,姜彤,苏布达,等. 共享社会经济路径在土地利用、能源与碳排放研究的应用[J]. 大气科学学报,2022,45(3):397‑413.
JING C,JIANG T,SU B D,et al. Multiple application of shared socioeconomic pathways in land use,energy and carbon emission research[J]. Transactions of Atmospheric Sciences,2022,45(3):397‑413.
[18]吴统文,宋连春,李伟平,等. 北京气候中心气候系统模式研发进展:在气候变化研究中的应用[J]. 气象学报,2014,72(1):12‑29.
WU T W,SONG L C,LI W P,et al. An overview on progress in Beijing climate center climate system model:Its development and application to climate change studies[J]. Acta Meteorologica Sinica,2014,72 (1):12‑29.
[19]周天军,陈梓明,陈晓龙,等. IPCC AR6报告解读:未来的全球气候:基于情景的预估和近期信息[J]. 气候变化研究进展,2021,17(6):652‑663.
ZHOU T J,CHEN Z M,CHEN X L,et al. Interpreting IPCC AR6:Future global climate based on projection under scenarios and on near‑term information[J].Climate Change Research,2021,17(6):652‑663.
[20]WANG R L,LI Q,HE S S,et al. Modeling and mapping the current and future distribution of Pseudomonas syringae pv. actinidiae under climate change in China[J]. PLoS One,2018,13(2):e0192153.
[21]SWETS J A. Measuring the accuracy of diagnostic systems[J].Science,1988,240(4857):1285‑1293.
[22]KUMAR S,SPAULDING S A,STOHLGREN T J,et al.Potential habitat distribution for the freshwater diatom Didymosphenia geminata in the continental US[J].Frontiers in Ecology and the Environment,2009,7(8):415‑420.
[23]陈禹光,乐新贵,陈宇涵,等. 基于MaxEnt模型预测气候变化下杉木在中国的潜在地理分布[J].应用生态学报,2022,33(5):1207‑1214.
CHEN Y G,LE X G,CHEN Y H,et al. Identification of the potential distribution area of Cunninghamia lanceolata in China under climate change based on the MaxEnt model [J]. Chinese Journal of Applied Ecology,2022,33(5):1207‑1214.
[24]李晓霞,胡宽义,曾安逸,等. 基于MaxEnt模型预测海南外来入侵植物新记录种:沼生金纽扣在中国的潜在适生区[J]. 热带作物学报,2024,45(9):1989‑1997.
LI X X,HU K Y,ZENG A Y,et al. MaxEnt modeling prediction of the potential distribution of Acmella uliginosa,a newly recorded invasive plant in Hainan,China[J]. Chinese Journal of Tropical Crops,2024,45(9):1989‑1997.
[25]GUO Y L,LI X,ZHAO Z F,et al. Modeling the distribution of Populus euphratica in the Heihe River Basin,an inland river basin in an arid region of China [J]. Science China Earth Sciences,2018,61(11):1669‑1684.
[26]张玉洁,余函纹,郑昭焕,等. 基于优化的Maxent模型预测桔梗在中国的潜在适生区[J]. 药学学报,2024,59(9):2625‑2633.
ZHANG Y J,YU H W,ZHENG Z H,et al. Predicting the potential suitable areas of Platycodon grandiflorum in China using the optimized Maxent model[J]. Acta Pharmaceutica Sinica,2024,59(9):2625‑2633.
[27]付贵全,徐先英,马剑平,等. 基于MaxEnt下梭梭潜在地理分布对水热条件的响应[J]. 草业科学,2016,33(11):2173‑2179.
FU G Q,XU X Y,MA J P,et al. Responses of Haloxylon ammodendron potential geographical distribution to the hydrothermal conditions under MaxEnt model[J].Pratacultural Science,2016,33 (11):2173‑2179.
[28]李小艳,张远彬,潘开文,等. 温度升高对林线交错带西川韭与草玉梅生殖物候与生长的影响[J]. 生态学杂志,2009,28(1):12‑18.
LI X Y,ZHANG Y B,PAN K W,et al. Effects of elevated temperature on reproductive phenology and growth of Allium xichuanense and Anemone rivularis in timberline ecotone[J]. Chinese Journal of Ecology,2009,28(1):12‑18.
[29]张林涛,罗金蕾,黄双杰,等. 信阳不同海拔茶树越冬期间叶片生理特性和细胞结构的变化[J]. 河南农业科学,2025,54(9):61‑71.
ZHANG L T,LUO J L,HUANG S J,et al. Changes in physiological characteristics and cellular structures of tea plant leaves during overwintering at different altitudes in Xinyang[J]. Journal of Henan Agricultural Sciences,2025,54(9):61‑71.
[30]李凯,罗世武,王湛,等. 不同类型地膜覆盖对宁夏旱作区土壤环境及饲用型作物生长的影响[J].河南农业科学,2025,54(1):90‑100.
LI K,LUO S W,WANG Z,et al. Effects of different types of surface mulching on soil environment and growth of forage crop in Ningxia dry farming area[J].Journal of Henan Agricultural Sciences,2025,54(1):90‑100.
[31]王富磊,严锦申,王初亮,等. 不同海拔下生物炭对烟株根际土壤理化特性及其细菌群落结构的影响[J].河南农业大学学报,2025,59(4):625‑634.
WANG F L,YAN J S,WANG C L,et al. Effects of biochar on rhizosphere physicochemical properties and
bacterial community structure of tobacco plants at different altitudes[J]. Journal of Henan Agricultural University,2025,59(4):625‑634.
[32]张旭屹,彭仕乐,谢慧,等. 固氮与秸秆降解复合菌剂构建及其在秸秆还田中的应用[J].河南农业大学学报,2025,59(2):306‑315.
ZHANG X Y,PENG S L,XIE H,et al. Construction of nitrogen fixation and straw degradation composite microbial agent and its application in straw returning to the field[J]. Journal of Henan Agricultural University,2025,59(2):306‑315.
[33]关皓月,李梦瑶,李国强,等. 芝麻发育期模拟模型参数敏感性分析与优化[J].河南农业科学,2024,53(9):159‑170.
GUAN H Y,LI M Y,LI G Q,et al. Parameter sensitivity analysis and optimization of sesame phenology simulation model[J]. Journal of Henan Agricultural Sciences,2024,53(9):159‑170.
[34]郑艺伟,江睿,吕丽沛,等. 华北土石山区侧柏水分利用效率及其对气候因子的响应[J]. 河南农业大学学报,2025,59(1):102‑111.
ZHENG Y W,JIANG R,LÜ L P,et al. Water use efficiency of Platycladus orientalis and its response to climate factors in rocky mountainous areas of North China[J]. Journal of Henan Agricultural University,2025,59(1):102‑111.
[35]马煦晗,黄菊莹,余海龙,等. 降水量变化及氮添加下荒漠草原土壤有机碳及其易分解组分研究[J]. 植物生态学报,2024,48(8):1065‑1077.
MA X H,HUANG J Y,YU H L,et al. Soil organic carbon and its easily decomposed components under precipitation change and nitrogen addition in a desert steppe in northwest China[J]. Chinese Journal of Plant Ecology,2024,48(8):1065‑1077.
[36]WALDE M G,WENDEN B,CHUINE I,et al. Stable water isotopes reveal the onset of bud dormancy in temperate trees,whereas water content is a better proxy for dormancy release[J]. Tree Physiology,2024,44(4):tpae028.
[37]曹福祥,徐庆军,曹受金,等. 全球变暖对物种分布的影响研究进展[J]. 中南林业科技大学学报,2008,28(6):86‑89.
CAO F X,XU Q J,CAO S J,et al. Advances of global warming impact on species distribution[J]. Journal of
Central South University of Forestry & Technology,2008,28(6):86‑89.
[38]李海铭,谢文文,沈邱筱萧,等. Maxent模型优化预测气候变化下西藏瑞香狼毒潜在适生区[J]. 草地学报,2025,33(8):2603‑2617.
LI H M,XIE W W,SHEN Q X X,et al. Maxent model optimized and predicted the potential suitable habitat area of Stellera chamaejasme L. in Tibet under climate change[J]. Journal of Grassland,2025,33(8):2603‑2617.
[39]CHEN Y H,LI Y,MAO L F. Combining the effects of global warming,land use change and dispersal limitations to predict the future distributions of east Asian Cerris oaks(Quercus Section Cerris,Fagaceae)in China[J]. Forests,2022,13(3):367.
[40]TANG L L,WANG R X,HE K S,et al. Throwing light on dark diversity of vascular plants in China:Predicting the distribution of dark and threatened species under global climate change[J]. PeerJ,2019,7:e6731.
|