[1]OH S Y,KIM M,EIMES J A,et al. Effect of fruiting body bacteria on the growth of Tricholoma matsutake and its related molds[J]. PLoS One,2018,13(2):e0190948.
[2]DING X,ZHANG N,HOU Y L,et al.Protein chip analysis of cytokines reveals a key mechanism of the antitumor and immunostimulatory activities of Tricholoma matsutake polysaccharide[J]. Pakistan Journal of Pharmaceutical Sciences,2019,32(2):651‑659.
[3]HOU Y L, DING X, HOU W R, et al.Anti‑microorganism,anti‑tumor,and immune activities of a novel polysaccharide isolated from Tricholoma matsutake[J]. Pharmacognosy Magazine,2013,9(35):244‑249.
[4]YOU L J,GAO Q,FENG M Y,et al.Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities[J].Food Chemistry,2013,138(4):2242‑2249.
[5]CARRETERO‑PAULET L, GALSTYAN A,ROIG‑VILLANOVA I,et al. Genome‑wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis,poplar,rice,moss,and algae[J].Plant Physiology,2010,153(3) :1398‑1412.
[6]WANG J,CHENG G,WANG C,et al. Author Correction:The bHLH transcription factor CgbHLH001 is a potential interaction partner of CDPK in halophyte Chenopodium glaucum[J].Scientific Reports,2018,8:18074.
[7]GAO C,SUN J L,WANG C Q,et al. Genome‑wide analysis of basic/helix‑loop‑helix gene family in peanut and assessment of its roles in pod development[J].PLoS One,2017,12(7):e0181843.
[8]MIAO L M,GAO Y Y,ZHAO K,et al. Comparative analysis of basic helix‑loop‑helix gene family among Brassica oleracea,Brassica rapa,and Brassica napus[J].BMC Genomics,2020,21(1):178.
[9]QIAN Y C,ZHANG T Y,YU Y,et al. Regulatory mechanisms of bHLH transcription factors in plant adaptive responses to various abiotic stresses[J].Frontiers in Plant Science,2021,12:677611.
[10]TOLEDO‑ORTIZ G,HUQ E,QUAIL P H. The Arabidopsis basic/helix‑loop‑helix transcription factor family[J].The Plant Cell,2003,15(8):1749‑1770.
[11]KHAN I,ASAF S,JAN R,et al. Genome‑wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato(Solanum lycopersicum L.)[J].Frontiers in Plant Science,2023,14:1100895.
[12]GONDAL A H. A detailed review study of zinc involvement in animal,plant and human nutrition[J].Indian Journal of Pure & Applied Biosciences,2021,9 (2):262‑271.
[13]KHAN I,KHAN S,ZHANG Y,et al. Genome‑wide analysis and functional characterization of the Dof transcription factor family in rice(Oryza sativa L.)[J].Planta,2021,253(5):101.
[14]LI S C,HAN X J,LU Z C,et al. MAPK cascades and transcriptional factors:Regulation of heavy metal tolerance in plants[J].International Journal of Molecular Sciences,2022,23(8):4463.
[15]KHAN I,KHAN S,ZHANG Y,et al. CRISPR‑Cas technology based genome editing for modification of salinity stress tolerance responses in rice(Oryza sativa L.)[J].Molecular Biology Reports,2021,48(4):3605‑3615.
[16]宋倩,钱绍方,陈宣钦,等. 丹波黑大豆GmbHLH30转录因子耐铝功能初步研究[J].生命科学研究,2014,18(4):332‑337.
SONG Q,QIAN S F,CHEN X Q,et al. Study on the function of transcription factor GmbHLH30 on aluminum tolerance preliminary in Tampa black soybean[J].Life Science Research,2014,18(4):332‑337.
[17]SUN K L,WANG H Y,XIA Z L.The maize bHLH transcription factor bHLH105 confers manganese tolerance in transgenic tobacco[J].Plant Science,2019,280:97‑109.
[18]SUN H,FAN H J,LING H Q. Genome‑wide identification and characterization of the bHLH gene family in tomato[J]. BMC Genomics,2015,16(1):9‑20.
[19]张宇慧,马鑫旺,夏志兰,等. 镉胁迫下姬松茸菌株转录组测序及分析[J].湖南农业科学,2022(8):1‑8.
ZHANG Y H,MA X W,XIA Z L,et al.Sequencing and analysis of Agaricus blazei Mycelium transcriptome 82 under cadmium stress [J]. Hunan Agricultural Sciences,2022(8):1‑8.
[20]WANG Y T,XI Z A,WANG X H,et al.Identification of bHLH family genes in Agaricus bisporus and transcriptional regulation of arginine catabolism‑related genes by AbbHLH1 after harvest[J].International Journal of Biological Macromolecules,2023,226:496‑509.
[21]TANG X,DING X,HOU Y L. Comparative analysis of transcriptomes revealed the molecular mechanism of development of Tricholoma matsutake at different stages of fruiting bodies[J].Food Science and Biotechnology,2020,29(7):939‑951.
[22]WEN X F,GENG F,XU Y S,et al. Quantitative transcriptomic and metabolomic analyses reveal the changes in Tricholoma matsutake fruiting bodies during cold storage[J]. Food Chemistry,2022,381:132292.
[23]熊晓斌,吴芳,黄晓辉. 四种重金属对食用菌菌丝生长及子实体富集量影响[J].食用菌,2018,40(5):18‑20.
XIONG X B,WU F,HUANG X H,et al. Effect of four heavy metals on mycelial growth and fruiting body enrichment of edible mushroom[J]. Edible Fungi,2018,40(5):18‑20.
[24]黄在兴,陈华,翁伯琦,等. 基于转录组测序的姬松茸镉胁迫下内参基因筛选[J].微生物学报,2021,61 (11):3458‑3470.
HUANG Z X,CHEN H,WENG W,et al. Screening of reference genes under cadmium stress in Agaricus brasiliensis based on transcriptome sequencing[J].Acta Microbiologica Sinica,2021,61(11):3458‑3470.
[25]LIU Z H,CHEN Y,WANG N N,et al. A basic helix‑loop‑helix protein (GhFP1) promotes fibre
elongation of cotton(Gossypium hirsutum)by modulating brassinosteroid biosynthesis and signalling[J].New Phytologist,2020,225(6):2439‑2452.
[26]LI J L,WANG T,HAN J,et al. Genome‑wide identification and characterization of cucumber bHLH family genes and the functional characterization of CsbHLH041 in NaCl and ABA tolerance in Arabidopsis and cucumber[J].BMC Plant Biology,2020,20(1):272.
[27]NEGRÓN‑PIÑEIRO L J,WU Y S,DI GREGORIO A.Transcription factors of the bHLH family delineate vertebrate landmarks in the nervous system of a simple chordate[J].Genes,2020,11(11):1262.
[28]SAILSBERY J K,ATCHLEY W R,DEAN R A.Phylogenetic analysis and classification of the fungal bHLH domain[J]. Molecular Biology and Evolution,2012,29(5):1301‑1318.
[29]HOSHIZAKI D K,HILL J E,HENRY S A.The Saccharomyces cerevisiae INO4 gene encodes a small,highly basic protein required for derepression of phospholipid biosynthetic enzymes[J]. Journal of Biological Chemistry,1990,265(8):4736‑4745.
[30]BENTON B K,REID M S,OKAYAMA H. A Schizosaccharomyces pombe gene that promotes sexual differentiation encodes a helix‑loop‑helix protein with homology to MyoD[J].EMBO Journal,1993,12(1):135‑143.
[31]WANG Y Z,ZENG X L,LIU W G. De novo transcriptomic analysis during Lentinula edodes fruiting body growth[J].Gene,2018,641:326‑334.
|