Journal of Henan Agricultural Sciences ›› 2024, Vol. 53 ›› Issue (12): 139-148.DOI: 10.15933/j.cnki.1004-3268.2024.12.014
• Horticulture • Previous Articles Next Articles
LIU Dan1,MAO Fengling2,BAI Jinxin1
Received:
2024-09-05
Published:
2024-12-15
Online:
2025-01-14
刘丹1,毛凤玲2,白金鑫1
作者简介:
刘丹(1988-),女,内蒙古巴彦淖尔人,讲师,硕士,主要从事风景园林与环境艺术设计。E-mail:OY191221@163.com
基金资助:
CLC Number:
LIU Dan, MAO Fengling, BAI Jinxin. Effect of Different Concentrations of Exogenous ZnONPs on the Heat Tolerance of Snapdragon[J]. Journal of Henan Agricultural Sciences, 2024, 53(12): 139-148.
刘丹, 毛凤玲, 白金鑫. 不同质量浓度外源ZnONPs 对金鱼草耐热性的影响[J]. 河南农业科学, 2024, 53(12): 139-148.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnnykx.org.cn/EN/10.15933/j.cnki.1004-3268.2024.12.014
[1]WANG J,WU H H,WANG Y C,et al.Small particles,big effects:How nanoparticles can enhance plant growth in favorable and harsh conditions[J].Journal of Integrative Plant Biology,2024,66(7):1274‑1294. [2]王敬营,王佳旭,陈丽娜,等. 埃洛石纳米管对铜胁迫下小麦幼苗生长的影响[J]. 河南农业科学,2024,53(7):28‑34. WANG J Y,WANG J X,CHEN L N,et al. Effect of halloysite nanotubes on growth of wheat under copper stress[J]. Journal of Henan Agricultural Sciences,2024,53(7):28‑34. [3]韩铭,张全国,周楠,等.光催化纳米颗粒对光合细菌HAU-M1产氢的影响[J].河南农业大学学报,2023,57(2):316‑323. HAN M,ZHANG Q G,ZHOU N,et al. Effect of photocatalytic nanoparticles on hydrogen production by photosynthetic bacteria HAU‑M1[J]. Journal of Henan Agricultural University,2023,57(2):316‑323. [4]和春昊,金钺,张晨昕,等. 携肠球菌Ace抗原的铁蛋白纳米粒制备与免疫效果检测[J].河南农业大学学报,2020,54(4):638‑642. HE C H,JIN Y,ZHANG C X,et al. Preparation and immunoassay of ferritin nanoparticles carrying antigenic epitopes of Ace from Enterococcus feacalis[J].Journal of Henan Agricultural University,2020,54(4):638‑642. [5]WANG P,LOMBI E,ZHAO F J,et al. Nanotechnology:A new opportunity in plant sciences[J]. Trends in Plant Science,2016,21(8):699‑712. [6]安义伟,梁慧慧,仲崇佳,等. 纳米基因载体在植物遗传转化中的应用进展[J].河南农业科学,2022,51(12):1‑9. AN Y W,LIANG H H,ZHONG C J,et al.Progress on application of nano‑gene vector in plant genetic transformation [J]. Journal of Henan Agricultural Sciences,2022,51(12):1‑9. [7]DENG C H,TANG Q,YANG Z M,et al.Effects of iron oxide nanoparticles on phenotype and metabolite changes in hemp clones(Cannabis sativa L.)[J].Frontiers of Environmental Science & Engineering,2022,16(10):134. [8]孙露莹,宋凤斌,李向楠,等. 纳米氧化锌对玉米种子萌发及根系碳代谢的影响[J]. 土壤与作物,2020,9(1):40‑49. SUN L Y,SONG F B,LI X N,et al. Effects of ZnO nanoparticles on seed germination and root carbon metabolism in maize(Zea mays L. )[J]. Soils and Crops,2020,9(1):40‑49. [9]彭晴晴,杨静雅,钟民正,等. ZnO NPs对四种豆科种子发芽及幼苗生长的影响[J]. 农业环境科学学报,2021,40(6):1174‑1182. PENG Q Q,YANG J Y,ZHONG M Z,et al. Effects of ZnO nanoparticles on the germination and seedling growth of four legume seeds[J].Journal of Agro‑Environment Science,2021,40(6):1174‑1182. [10]胡灵璇,王晓红,张胜前,等.叶面施加纳米氧化锌对木槿生长及生理特性的影响[J].湖南生态科学学报,2023,10(3):51‑58. HU L X,WANG X H,ZHANG S Q,et al.Effects of foliar application of zinc oxide nanoparticles in Hibiscus syriacus[J].Journal of Hunan Ecological Science,2023,10(3):51‑58. [11]牟鲯璃,陈开俊,李雨航,等. 氧化锌纳米颗粒对生菜养分吸收及光合作用的影响[J].浙江大学学报(农业与生命科学版),2023,49(2):229‑240. MOU Q L,CHEN K J,LI Y H,et al. Effects of zinc oxide nanoparticles on nutrient uptake and photosynthesis of lettuce[J].Journal of Zhejiang University(Agriculture and Life Sciences),2023,49 (2):229‑240. [12]GUO J H,LI S X,BRESTIC M,et al. Modulations in protein phosphorylation explain the physiological responses of barley(Hordeum vulgare)to nanoplastics and ZnO nanoparticles[J]. Journal of Hazardous Materials,2023,443:130196. [13]曹冲,黄娟,王宁,等. 纳米氧化锌对湿地植物种子萌发的影响[J].东南大学学报(自然科学版),2017,47(2):416‑420. CAO C,HUANG J,WANG N,et al.Impact of zinc oxide nanoparticles on seed germination of wetland plant[J].Journal of Southeast University(Natural Science Edition),2017,47(2):416‑420. [14] VERMA S K,DAS A K,PATEL M K,et al. Engineered nanomaterials for plant growth and development:A perspective analysis [J]. Science of the Total Environment,2018,630:1413‑1435. [15]KHAN A R,AZHAR W,FAN X M,et al. Efficacy of zinc‑based nanoparticles in alleviating the abiotic stress in plants: Current knowledge and future perspectives[J]. Environmental Science and Pollution Research,2023,30(51):110047‑110068. [16]QIU J H,CHEN Y,LIU Z Q,et al. The application of zinc oxide nanoparticles:An effective strategy to protect rice from rice blast and abiotic stresses[J].Environmental Pollution,2023,331:121925. [17]PUJOL B,ARCHAMBEAU J,BONTEMPS A,et al.Mountain landscape connectivity and subspecies appurtenance shape genetic differentiation in natural plant populations of the snapdragon(Antirrhinum majus L.)[J].Botany Letters,2017,164(2):111‑119. [18]陈宇华,陈剑锋,钟声远,等. 20份金鱼草种质资源花色性状鉴定与分析[J].福建农业科技,2022,53(7):1‑7. CHEN Y H,CHEN J F,ZHONG S Y,et al.Identification and analysis of flower color traits of 20 germplasm resources of Antirrhinum majus[J].Fujian Agricultural Science and Technology,2022,53(7):1‑7. [19]宋倩娜,刘琛,高振蕊,等. 热激启动子18. 2在金鱼草中启动下游基因表达最适温度条件的筛选[J]. 生态学杂志,2014,33(9):2436‑2441. SONG Q N,LIU C,GAO Z R,et al. Optimal temperature for hsp18. 2 promoter in gene expression of anthocyanin biosynthesis of Antirrhinum majus[J].Chinese Journal of Ecology,2014,33(9):2436‑2441.[20]吴华. AsA-GSH循环参与海滨木槿盐应答机制的研究[D]. 济南:山东师范大学,2015.WU H. Study on the mechanism of AsA‑GSH cycle participating in salt response of Hibiscus littoral[D].Ji’nan:Shandong Normal University,2015. [21]王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京:高等教育出版社,2006.WANG X K. Principles and techniques of plant physiological and biochemical experiments[M]. 2nd edition. Beijing:Higher Education Press,2006. [22]王会涛,袁刘正,柳家友,等. 花期高温对玉米的影响研究进展[J].河南农业科学,2022,51(9):1‑9. WANG H T,YUAN L Z,LIU J Y,et al. Research progress on effect of high temperature on maize atflowering stage[J]. Journal of Henan Agricultural Sciences,2022,51(9):1‑9. [23]田佳,李佳,孟清波,等. 不同苹果品种叶片耐热阈值及高温下生理生化响应[J]. 河南农业科学,2021,50 (1):121‑128. TIAN J,LI J,MENG Q B,et al. Heat tolerance threshold and physiological and biochemical responses of leaves of different apple varieties[J]. Journal of Henan Agricultural Sciences,2021,50(1):121‑128.[24] 袁慧敏,王革伏,樊佳茹,等. 高温对番茄幼苗生长和花芽分化的影响[J]. 西北植物学报,2019,39(10):1768‑1775. YUAN H M,WANG G F,FAN J R,et al. Effect of high temperature stress on growth and floral bud differentiation of tomato seedlings[J]. Acta Botanica Boreali‑Occidentalia Sinica,2019,39(10):1768‑1775. [25]KAREEM H A,HASSAN M U,ZAIN M,et al.Nanosized zinc oxide(n‑ZnO)particles pretreatment to alfalfa seedlings alleviate heat‑induced Morpho‑physiological and ultrastructural damages[J].Environmental Pollution,2022,303:119069. [26]聂青. SiO2提高匍匐型剪股颖和水稻耐高温胁迫的机理研究[D]. 北京:中国农业大学,2002. NIE Q. Study on the mechanism of SiO2 enhancing creeping sheath and rice’s tolerance to high temperature stress[D]. Beijing:China Agricultural University,2002. [27]江建成,廖菊阳,曹受金,等. 高温胁迫对三种杜鹃生长及生理的影响[J]. 北方园艺,2023(18):54‑62. JIANG J C,LIAO J Y,CAO S J,et al. Effects of high temperature stress on the growth and physiology ofthree Rhododendron species[J]. Northern Horticulture,2023(18):54‑62. [28]刘晨,许业洲,杜超群,等. SiO2纳米颗粒对杉木幼苗生长发育的影响[J]. 中南林业科技大学学报,2020,40(4):34‑43. LIU C,XU Y Z,DU C Q,et al. Effects of SiO2 nanoparticles on growth and development of Cunninghamia lanceolata(Lamb.) Hook[J]. Journal of Central South University of Forestry & Technology,2020,40(4):34‑43. [29]刘敏,房玉林. 高温胁迫对葡萄幼树生理指标和超显微结构的影响[J]. 中国农业科学,2020,53(7):1444‑1458. LIU M,FANG Y L. Effects of heat stress on physiological indexes and ultrastructure of grapevines[J]. Scientia Agricultura Sinica,2020,53(7) :1444‑1458. [30]刘辉,骆慧枫,张琛,等. 甜樱桃对高温胁迫的生理响应[J].生态学报,2023,43(2):702‑708. LIU H,LUO H F,ZHANG C,et al. Physiological responses to high temperature stress in Prunus avium L.[J]. Acta Ecologica Sinica,2023,43(2):702‑708.[31]李萍萍,曾明,李文海,等. 胡杨异形叶抗氧化能力的比较[J]. 北京林业大学学报,2019,41(8):76‑83. LI P P,ZENG M,LI W H,et al. Comparative study on antioxidant capacity of heteromorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University,2019,41(8):76‑83. [32]刘晨,吴楚. SiO2纳米颗粒对黄瓜“新唐山秋瓜”幼苗根系解剖结构和气体交换的影响[J]. 安徽农业大学学报,2020,47(1):148‑154. LIU C,WU C. Effects of SiO2 nanopaticles on root anatomy and gas exchange of Cucumis sativus cv. “Qiugua of New Tangshan”[J]. Journal of Anhui Agricultural University,2020,47(1):148‑154.
[33]MA Y X,HUANG J,CAO C,et al. Effects of silver nanoparticles on resistance characteristics of the wetland plant Typha orientalis in a hydroponic system[J]. Journal of Southeast University(English Edition),2019,35(3):381‑388. |
[1] | LI Yuanyuan, ZHANG Wenjing, LI Nan. Effects of PGPR on Arsenic Accumulation and Physiological Characteristics of Aquatic Plants under Arsenic Stress [J]. Journal of Henan Agricultural Sciences, 2024, 53(6): 67-78. |
[2] | YANG Yan, XIAO Bin. Effects of Exogenous Melatonin on the Photosynthesis,ASA‑GSH Cycle,and Hormone Changes of Malus‘Royalty’under Drought Stress [J]. Journal of Henan Agricultural Sciences, 2024, 53(6): 100-110. |
[3] | QI Xianke, LI Miao, LI Caihong, QU Chenling. Effects of PAW and Its Combined Action with LTP on Seed Germination and Seedling Growth of Wheat [J]. Journal of Henan Agricultural Sciences, 2024, 53(4): 20-29. |
[4] | ZHOU Shifeng, QIN Renqiang. Regulation of Plant Growth⁃Promoting Bacteria and Exogenous 2,4⁃Epibrassinolide on Photosynthetic Physiology and Ion Transport of Rose Seedlings under Salt Stress [J]. Journal of Henan Agricultural Sciences, 2024, 53(10): 138-148. |
[5] | MA Wei, WU Zhiming, YU Kesong. Study on Canopy Chlorophyll Estimation Model of Buckwheat with Different Selenium Levels Based on UAV Multispectrum [J]. Journal of Henan Agricultural Sciences, 2023, 52(3): 161-172. |
[6] | WANG Yanqin, MENG Xiangang, LI Wuyang, LUO Guanghong. Effects of Chlamydomonas on Photosynthetic Physiological Indexes of Wheat Seedlings under Salt Stress [J]. Journal of Henan Agricultural Sciences, 2023, 52(10): 22-29. |
[7] | ZHONG Luming, ZHAI Tingkai, HAO Siyi, LIN Biying, CHU Yufan, YANG Yuying, SHEN Baoying. Screening and Mechanism Exploration of Light Intensity during Grafting Healing of Cucumber [J]. Journal of Henan Agricultural Sciences, 2022, 51(7): 123-133. |
[8] | TIAN Yangqing, MA Chunmei, ZHAO Qiang, WU Xueqin, LI Jiangyu. Effects of Phthalamic Acid on Dry Matter Accumulation,Nutrient Absorption and Yield of Cotton [J]. Journal of Henan Agricultural Sciences, 2022, 51(6): 67-75. |
[9] | HAO He, ZHONG Cuihong, LI Xinze, WANG Haiying, WU Ya’nan, WANG Fengshen, LIU Guanhui, SHI Yuxiang, ZHANG Yongying. Effect of Fermented Traditional Chinese Medicine on Intestinal Flora Structure of Broilers under Heat Stress [J]. Journal of Henan Agricultural Sciences, 2021, 50(9): 135-142. |
[10] | SUN Lanlan, LI Jing, XUE Fei, XU Hongle, WU Renhai, SU Wangcang. Effect of Volunteer Wheat at Different Densities on Photosynthetic Characteristics and Yield of Cultivated Wheat [J]. Journal of Henan Agricultural Sciences, 2021, 50(12): 103-110. |
[11] | SUN Haoyue, WU Hongbin, LI Ming, ZHANG Qi, HAN Yiqiang, DU Jidao. Effects of Melatonin Seed Soaking on Growth and Physiological Characteristics of Kidney Bean Seedlings under Salt Stress [J]. Journal of Henan Agricultural Sciences, 2021, 50(12): 111-120. |
[12] | SHI Yingying, HE Dong, YAO Xiaoyan, LUO Le, ZHANG Qixiang. Comparison on Chlorophyll Fluorescence Characteristics of Four Species of Primulina under Drought Stress [J]. Journal of Henan Agricultural Sciences, 2020, 49(9): 129-135. |
[13] | WANG Yanzhao, ZHOU Bo, HAN Xiaohua, HUANG Bao, LU Xiaomin, CHENG Junling, WANG Shufeng, NIE Lihong. Genome-Wide Identification of Maize GATA Gene Family and Expression Analysis under Heat Stress [J]. Journal of Henan Agricultural Sciences, 2020, 49(11): 19-25. |
[14] | LIU Wenwen, JI Fang, WANG Huahua. The Role of Hydrogen Sulphide in Improving Aluminium Tolerance of Soybean [J]. Journal of Henan Agricultural Sciences, 2019, 48(10): 64-69. |
[15] | NIU Yangli, ZHU Xiaopei, YANG Yaping, GE Xiaomin, DU Xiaohua, LIU Huichao. Cloning and Expression Analysis of HSP70 Gene in Different Heat-Resistant Pansy(Viola tricolor) Materials under Heat Stress [J]. Journal of Henan Agricultural Sciences, 2019, 48(10): 127-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||