Journal of Henan Agricultural Sciences ›› 2024, Vol. 53 ›› Issue (5): 10-21.DOI: 10.15933/j.cnki.1004-3268.2024.05.002
• Reviews • Previous Articles Next Articles
ZHAI Chongkai1,2,3,4,MAO Fuchao1,2,3,4,TIAN Wenjing1,2,3,4,WANG Conghui1,2,3,4,WANG Yingxian5,ZHANG Hewei1,2,3,4
Received:
2023-09-27
Published:
2024-05-15
Online:
2024-06-06
翟崇凯1,2,3,4,毛福超1,2,3,4,田文静1,2,3,4,王聪慧1,2,3,4,王迎鲜5,张贺伟1,2,3,4
通讯作者:
张贺伟(1986-),男,河南洛阳人,教授,博士,主要从事病原微生物与疫苗方面研究。E-mail:zhanghewei0825@126.com
作者简介:
翟崇凯(1989-),男,河南洛阳人,讲师,博士,主要从事病原微生物与免疫学方面研究。E-mail:zhaichongkai@gmail.com
基金资助:
CLC Number:
ZHAI Chongkai, MAO Fuchao, TIAN Wenjing, WANG Conghui, WANG Yingxian, ZHANG Hewei. mRNA Vaccines:Research Progress and Applications in Animal Infectious Diseases[J]. Journal of Henan Agricultural Sciences, 2024, 53(5): 10-21.
翟崇凯, 毛福超, 田文静, 王聪慧, 王迎鲜, 张贺伟. mRNA疫苗在动物传染病中的研究进展及应用[J]. 河南农业科学, 2024, 53(5): 10-21.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnnykx.org.cn/EN/10.15933/j.cnki.1004-3268.2024.05.002
[1]DOLGIN E.The tangled history of mRNA vaccines[J].Nature,2021,597:318‑324. [2]SZABÓ G T,MAHINY A J,VLATKOVIC I.COVID‑19 mRNA vaccines:Platforms and current developments[J].Molecular Therapy,2022,30(5):1850‑1868. [3]KARAM M,DAOUD G.mRNA vaccines:Past,present,future[J].Asian Journal of Pharmaceutical Sciences,2022,17(4):491‑522. [4]PARDI N,HOGAN M J,WEISSMAN D.Recent advances in mRNA vaccine technology[J].Current Opinion in Immunology,2020,65:14‑20. [5]MIAO L,ZHANG Y,HUANG L.mRNA vaccine for cancer immunotherapy[J].Molecular Cancer,2021,20 (1):41. [6]POLACK F P,THOMAS S J,KITCHIN N,et al.Safety and efficacy of the BNT162b2 mRNA COVID‑19 vaccine[J].The New England Journal of Medicine,2020,383 (27):2603‑2615. [7]SAHLY H M,BADEN L R,ESSINK B,et al.Efficacy of the mRNA‑1273 SARS‑COV‑2 vaccine at completion of blinded phase[J].The New England Journal of Medicine,2021,385(19):1774‑1785. [8]TEO S P.Review of COVID‑19 mRNA vaccines:BNT162b2 and mRNA‑1273[J].Journal of Pharmacy Practice,2022,35(6):947‑951. [9]ZENG C,ZHANG C,WALKER P G,et al.Formulation and delivery technologies for mRNA vaccines[J].Current Topics in Microbiology and Immunology,2022,440:71‑110. [10]WADHWA A,ALJABBARI A,LOKRAS A,et al.Opportunities and challenges in the delivery of mRNA‑based vaccines[J].Pharmaceutics,2020,12 (2):102. [11]LI H,CHEN Y,MACHALABA C C,et al.Wild animal and zoonotic disease risk management and regulation in China:Examining gaps and one health opportunities in scope,mandates,and monitoring systems[J].One Health,2021,13:100301. [12]ZHANG C,MARUGGI G,SHAN H,et al.Advances in mRNA vaccines for infectious diseases[J].Frontiers in Immunology,2019,10:594. [13] BAI Y,WANG Q,LIU M,et al.The next major emergent infectious disease:Reflections on vaccine emergency development strategies[J].Expert Review of Vaccines,2022,21(4):471‑481. [14]LAMB Y N.BNT162b2 mRNA COVID‑19 vaccine:First approval[J].Drugs,2021,81(4):495‑501. [15]HAUSE A M,MARQUEZ P,ZHANG B C,et al.Safety monitoring of bivalent COVID‑19 mRNA vaccine booster doses among persons aged ≥12 years‑United States,August 31‑October 23,2022[J].Morbidity and Mortality Weekly Report,2022,71(44):1401‑1406. [16]PARDI N,HOGAN M J,PORTER F W,et al.mRNA vaccines:New era in vaccinology[J].Nature Reviews Drug Discovery,2018,17(4):261‑279. [17]VISHWESHWARAIAH Y L,DOKHOLYAN N V.mRNA vaccines for cancer immunotherapy[J].Frontiers in Immunology,2022,13:1029069. [18]CAI X H,LI J J,LIU T,et al.Infectious disease mRNA vaccines and a review on epitope prediction for vaccine design[J].Briefings in Functional Genomics,2021,20(5):289‑303. [19]LI C F,LEE A,GRIGORYAN L,et al.Mechanisms of innate and adaptive immunity to the Pfizer‑BioNTech BNT162b2 vaccine[J]. Nature Immunology,2022,23 (4):543‑555. [20] WEBB C,IP S,BATHULA N V,et al. Current status and future perspectives on mRNA drug manufacturing[J].Molecular Pharmaceutics, 2022, 19 (4) :1047‑1058. [21]MASCOLA J R,FAUCI A S.Novel vaccine technologies for the 21st century[J].Nature Reviews Immunology,2020,20(2):87‑88. [22]FANG E,LIU X H,LI M,et al.Advances in COVID‑19 mRNA vaccine development[J].Signal Transduction and Targeted Therapy,2022,7(1):94. [23]HASSINEI H. COVID‑19 vaccines and variants of concern:A review[J].Reviews in Medical Virology 2022,32(4):e2313. [24]THOMAS S J,MOREIRA E D,KITCHIN N,et al.Safety and efficacy of the BNT162b2 mRNA COVID‑19 vaccine through 6 months[J].The New England Journal of Medicine,2021,385(19) :1761‑1773. [25]LEAV B,STRAUS W,WHITE P,et al.A Brighton Collaboration standardized template with key considerations for a benefit/risk assessment for the Moderna COVID‑19 vaccine (mRNA‑1273)[J].Vaccine,2022,40(35):5275‑5293. [26]XU H,ZHENG X N,ZHANG S Y,et al.Tumor antigens and immune subtypes guided mRNA vaccine development for kidney renal clear cell carcinoma[J].Molecular Cancer,2021,20(1):159. [27]GUPTA M,WAHI A,SHARMA P,et al.Recent advances in cancer vaccines:Challenges,achievements,and futuristic prospects[J].Vaccines,2022,10(12):2011. [28]XU S Q,YANG K P,LI R,et al.mRNA vaccine Era:Mechanisms,drug platform and clinical prospection[J].International Journal of Molecular Sciences,2020,21 (18):6582. [29]GRUDZIEN‑NOGALSKA E,JEMIELITY J,KOWALSKA J,et al.Phosphorothioate cap analogs stabilize mRNA and increase translational efficiency in mammalian cells[J].RNA,2007,13(10):1745‑1755. [30]KOZARSKI M,DRAZKOWSKA K,BEDNARCZYK M,et al.Towards superior mRNA caps accessible by click chemistry:Synthesis and translational properties of triazole‑bearing oligonucleotide cap analogs[J].RSC Advances,2023,13(19):12809‑12824. [31]LIANG Y J ,HUANG L P,LIU T C.Development and delivery systems of mRNA vaccines[J].Frontiers in Bioengineering and Biotechnology,2021,9:718753. [32]SONENBERG N,HINNEBUSCH A G.Regulation of translation initiation in eukaryotes:Mechanisms and biological targets[J].Cell,2009,136(4):731‑745. [33]MARQUES R,LACERDA R,LUÍSA ROMÃO.Internal ribosome entry site(IRES)‑mediated translation and its potential for novel mRNA‑based therapy development[J].Biomedicines,2022,10(8):1865. [34]TAN X H,WAN Y H.Enhanced protein expression by internal ribosomal entry site‑driven mRNA translation as a novel approach for in vitro loading of dendritic cells with antigens[J].Human Immunology,2008,69 (1):32‑40. [35]KO H L,PARK H J,KIM J,et al.Development of an RNA expression platform controlled by viral internal ribosome entry sites[J].Journal of Microbiology and Biotechnology,2019,29(1):127‑140. [36]YOU H,JONES M K,GORDON C A,et al.The mRNA vaccine technology era and the future control of parasitic infections[J].Clinical Microbiology Reviews,2023,36(1):e0024121. [37]KIM S C,SEKHON S S,SHIN W R,et al.Modifications of mRNA vaccine structural elements for improving mRNA stability and translation efficiency[J].Molecular and Cellular Toxicology,2022,18(1):1‑8. [38]TO K K W,CHO W C S.An overview of rational design of mRNA‑based therapeutics and vaccines[J].Expert Opinion on Drug Discovery,2021,16(11):1307‑1317. [39]GEBRE M S,RAUCH S,ROTH N,et al.Optimization of non‑coding regions for a non‑modified mRNA COVID‑19 vaccine[J].Nature,2022,601:410‑414. [40]JACQUET A.Nucleic acid vaccines and CpG oligodeoxynucleotides for allergen immunotherapy[J].Current Opinion in Allergy and Clinical Immunology,2021,21(6):569‑575. [41]VERBEKE R,LENTACKER I,DE SMEDT S C,et al.The dawn of mRNA vaccines:The COVID‑19 case[J].Journal of Controlled Release,2021,333:511‑520. [42]CORBETT K S,EDWARDS D K,LEIST S R,et al.SARS‑CoV‑2 mRNA vaccine design enabled by prototype pathogen preparedness[J].Nature,2020,586:567‑571. [43]PAPI M,POZZI D,PALMIERI V,et al.Principles for optimization and validation of mRNA lipid nanoparticle vaccines against COVID‑19 using 3D bioprinting[J].Nano Today,2022,43:101403. [44]PARDI N,HOGAN M J,PELC R S,et al.Zika virus protection by a single low‑dose nucleoside‑modified mRNA vaccination[J].Nature,2017,543:248‑251. [45]BERNARD M C,BAZIN E,PETIOT N,et al.The impact of nucleoside base modification in mRNA vaccine is influenced by the chemistry of its lipid nanoparticle delivery system[J].Mol Ther Nucleic Acids,2023,32:794‑806. [46]ZHANG G,TANG T Y,CHEN Y F,et al.mRNA vaccines in disease prevention and treatment[J].Signal Transduction and Targeted Therapy,2023,8 (1):365. [47]SAHAY G,QUERBES W,ALABI C,et al.Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling[J].Nature Biotechnology,2013,31:653‑658. [48]HOU X C,ZAKS T,LANGER R,et al.Lipid nanoparticles for mRNA delivery[J].Nature Reviews Materials,2021,6(12):1078‑1094. [49]EYGERIS Y,GUPTA M,KIM J,et al. Chemistry of lipid nanoparticles for RNA delivery[J].Accounts of Chemical Research,2022,55(1):2‑12. [50]GILBERT P B,MONTEFIORI D C,MCDERMOTT A B, et al.Immune correlates analysis of the mRNA‑1273 COVID‑19 vaccine efficacy clinical trial[J].Science,2022,375(6576):43‑50. [51]DORRAJ G,CARRERAS J J,NUNEZ H,et al.Lipid nanoparticles as potential gene therapeutic delivery systems for oral administration[J].Current Gene Therapy,2017,17(2):89‑104. [52]CHEN J J,YE Z F,HUANG C F,et al.Lipid nanoparticle‑mediated lymph node‑targeting delivery of mRNA cancer vaccine elicits robust CD8+ T cell response[J].Proceedings of the National Academy of Sciences of the United States of America,2022,119 (34):e2207841119. [53]GRUNWITZ C,SALOMON N,VASCOTTO F,et al.HPV16 RNA‑LPX vaccine mediates complete regression of aggressively growing HPV‑positive mouse tumors and establishes protective T cell memory[J].Oncoimmunology,2019,8(9):e1629259. [54]SAMARIDOU E,HEYES J,LUTWYCHE P.Lipid nanoparticles for nucleic acid delivery:Current perspectives[J].Advanced Drug Delivery Reviews,2020,154/155:37‑63. [55]ZHAO Z W,ZHENG L Y,CHEN W Q,et al.Delivery strategies of cancer immunotherapy:Recent advances and future perspectives[J].Journal of Hematology and Oncology,2019,12(1):126. [56]PIPPA N,GAZOULI M,PISPAS S.Recent advances and future perspectives in polymer‑based nanovaccines[J].Vaccines,2021,9(6):558.
[57]YANG W Q,MIXICH L,BOONSTRA E,et al.Polymer‑based mRNA delivery strategies for advanced therapies[J].Advanced Healthcare Materials,2023,12 (15):e2202688. [59]RANA I,OH J,BAIG J,et al.Nanocarriers for cancer nano‑immunotherapy[J].Drug Delivery and Translational Research,2023,13(7):1936‑1954. [60]SHARTOUNY J R,LOWEN A C.Message in a bottle:mRNA vaccination for influenza[J].Journal of General Virology,2022,103(7):001765. [61]NAIK R,PEDEN K.Regulatory considerations on the development of mRNA vaccines[J].Current Topics in Microbiology and Immunology,2022,440:187‑205. [62]KUMAR A,BLUM J,LET T,et al.The mRNA vaccine development landscape for infectious diseases[J].Nature Reviews Drug Discovery,2022,21(5) :333‑334. [63]NITIKA,WEI J,HUI A M.The development of mRNA vaccines for infectious diseases:Recent updates[J].Infection and Drug Resistance,2021,14:5271‑5285. [64]FREDRIKA H,ALBERTO C,RODRIGO A C,et al.Unmodified rabies mRNA vaccine elicits high cross‑neutralizing antibody titers and diverse B cell memory responses[J].Nature Communications,2023,14(1):3713. [65]LI J L,LIU Q,LIU J,et al.An mRNA‑based rabies vaccine induces strong protective immune responses in mice and dogs[J]. Virology Journal,2022,19(1):184.
[66]董金杰,王会宝,王凡等.基于猪口蹄疫O型病毒结构蛋白VP1基因的mRNA疫苗制备及免疫活性研究[J].农业生物技术学报,2022,30(6):1219‑1227.
[67]IDRC‑International Development Research Centre(idrc‑crdi. ca).Development of a cross‑protective synthetic RNA vaccine against foot and mouth disease(FMD)[EB/OL].(2022‑03‑03)[2023‑07‑22].https://idrc‑crdi.ca/en/project/development‑cross‑protective‑synthetic‑rna‑vaccine‑against‑foot‑and‑mouth‑diseasefmd. [69]CHIVUKULA S,PLITNIK T,TIBBITTS T,et al.Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza[J].NPJ Vaccines,2021,6(1):153. [70]LEE I T,NACHBAGAUER R,ENSZ D,et al.Safety and immunogenicity of a phase 1/2 randomized clinical trial of a quadrivalent,mRNA‑based seasonal influenza vaccine(mRNA‑1010)in healthy adults:Interim analysis[J].Nature Communications,2023,14(1):3631. [71] ClinicalTrials. gov.A Study to evaluate the safety and immunogenicity of a single dose of H1ssF‑3928 mRNA‑LNP in healthy adults[EB/OL].[2023‑08‑10].https://classic.clinicaltrials.gov/ct2/show/NCT05755620. [72]AREVALO C P,BOLTON M J,SAGE V L,et al.Amultivalent nucleoside‑modified mRNA vaccine against all known influenza virus subtypes[J].Science,2022,378:899‑904. [73]LE T,SUN C,CHANG J T,et al.mRNA vaccine development for emerging animal and zoonotic diseases[J].Viruses,2022,14(2):401. [74]ZHANG M L,SUN J,LI M,et al.Modified mRNA‑LNP vaccines confer protection against experimental DENV‑2 infection in mice[J].Molecular Therapy Methods and Clinical Development,2020,18:702‑712. [75]USDA Cooperative Agreement.Development of a self‑amplifying mRNA vaccine for african swine fever and classical swine fever—Genvax technologies(usda.gov)[EB/OL]. (2021‑07‑01)[2023‑09‑06]. https://portal.nifa.usda.gov/web/crisprojectpages/0440187‑development‑of‑a‑self‑amplifying‑mrna‑vaccine‑forafrican‑swine‑fever‑and‑classical‑swine‑fever.html. [76]LI Z Y,CHEN W X,QIU Z L,et al.African swine fever virus:A review[J].Life(Basel),2022,12(8):1255. [77]CHEN W Y,ZHAO D M,HE X J,et al.A seven‑gene‑deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs[J].Science China Life Sciences,2020,63(5):623‑634. [78]BORCA M V,RAMIREZ‑MEDINA E,SILVA E,et al.Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic eurasia strain[J].Journal of Virology,2020,94(7):e02017‑19.
[79]LIU Y N,XIE Z H,LI Y,et al.Evaluation of an I177L gene‑based five‑gene‑deleted African swine fever virus as a live attenuated vaccine in pigs[J].Emerging Microbes and Infections,2023,12(1):2148560. |
[1] | QU Xiaotian, WANG Ya’nan, XU Qianru, LI Xueyang, ZHANG Shenli, ZHANG Erqin, ZHANG Gaiping. Expression and Purification of H5N1 Subtype Avian Influenza Virus HA Protein in Rice Endosperm [J]. Journal of Henan Agricultural Sciences, 2024, 53(3): 125-132. |
[2] | WEI Qiang, LI Qingmei, JIN Qianyue, SONG Yapeng, BAI Yilin, ZHANG Gaiping. Preparation and Identification of Neutralizing Monoclonal Antibodies against Egg Drop Syndrome Virus and the Use in Sandwich ELISA [J]. Journal of Henan Agricultural Sciences, 2024, 53(2): 128-135. |
[3] | SONG Yapeng, SUN Yaning, LIU Lin, YANG Jifei, LI Xinsheng, WEI Qiang, ZHANG Gaiping. Development and Preliminary Application of Colloidal Gold Immunochromatography Test Strips for Egg Drop Syndrome Virus Antibodies [J]. Journal of Henan Agricultural Sciences, 2024, 53(1): 125-132. |
[4] | FANG Jianyu, ZHANG Qingxian, LANG Limin, XU Bin, WANG Gaili, XI Yanyan, FENG Xianming, WANG Keling, LI Shaoyu. Prokaryotic Expression and Anti‑PRRSV Activity Study of Porcine IFN‑α8 [J]. Journal of Henan Agricultural Sciences, 2023, 52(9): 141-147. |
[5] | SUN Xueke, DING Peiyang, WANG Siqiao, LIU Siyuan, LI Minghui, CHANG Zejie, CHEN Yilan, LI Ruiqi, ZHANG Gaiping. Establishment and Identification of CHO Cell Line Stably Expressing S1 Protein of PDCoV [J]. Journal of Henan Agricultural Sciences, 2023, 52(6): 131-138. |
[6] | LI Yang, KANG Jungang, MA Zhanfei, WANG Yabo, ZHAO Bowei, JIANG Guojun. Effect of Traditional Chinese Medicine Residues On Growth Performance and Digestive Enzyme Activity of Earthworms [J]. Journal of Henan Agricultural Sciences, 2023, 52(5): 156-161. |
[7] | ZHANG Xiaoxia, YANG Yanqing, WANG Qiuyun, DU Junyang, CAO Hanwen, LIANG Zhenpu. Transcriptome Analysis of Long Non⁃coding RNA and mRNA Profiles in PRRSV⁃infected Marc⁃145 Cells [J]. Journal of Henan Agricultural Sciences, 2023, 52(4): 127-136. |
[8] | LI Peng, SUN Yanju, WANG Yinbiao, JIN Qianyue, LIANG Xiaoxiao, YIN Mei, WANG Xuannian, LIU Xingyou, WANG Liping. Development and Application of TB Green Ⅱ Real‑time PCR Method for Detection of Porcine Circovirus Type 3 [J]. Journal of Henan Agricultural Sciences, 2023, 52(3): 135-142. |
[9] | ZHAO Wenying, ZHANG Yunjing, BAI Xiaofei, SUN Yujie, GUO Linghua, HUANG Baicheng, TIAN Kegong. Isolation,Identification and Whole Genome Sequence Analysis of Porcine Parvovirus BJ2 Strain [J]. Journal of Henan Agricultural Sciences, 2023, 52(2): 136-144. |
[10] | WANG Weidong, TENG Man, ZHENG Luping, LIU Jinling, ZHANG Wenkai, LI Linyan, ZHANG Zhihui, FAN Jianming, LUO Jun. Effect of miR‑M11 Gene Editing on Replication of Marek’s Disease Virus in Vitro [J]. Journal of Henan Agricultural Sciences, 2023, 52(1): 134-143. |
[11] | SUI Panbo, XU Feifei, LIANG Guanda, DU Haili, LANG Jiashu, LI Junqiang. Molecular Identification of Giardia duodenalis and Cryptosporidium spp.from Sheep [J]. Journal of Henan Agricultural Sciences, 2022, 51(12): 147-152. |
[12] | CHEN Weicong, LIU Yunchao, ZHOU Chuanjie, YANG Suzhen, WEI Qiang, CHAI Shujun, ZHANG Gaiping. Immunogenicity Evaluation of Porcine Epidemic Diarrhea Virus S1 Protein [J]. Journal of Henan Agricultural Sciences, 2022, 51(11): 127-134. |
[13] | WANG Junna, LI Lingwei, WANG Qiuxia, SHI Wen, ZHANG Xin, LIU Xingyou, JIANG Jinqing, PEI Dawei. Isolation and Identification of Fowl Adenovirus in Xinxiang,Henan Province [J]. Journal of Henan Agricultural Sciences, 2022, 51(5): 133-139. |
[14] | LI Zhongbo, HOU Qianghong, LI Hui, SHU Ming. Haplotype Diversity and Phylogenetic Relationships of Theileria luwenshuni from Western Hunan [J]. Journal of Henan Agricultural Sciences, 2022, 51(4): 130-137. |
[15] | GUO Zhanda, DU Jimei, GUO Ziyi, WANG Xingang, ZHANG Yanhua. Molecular Epidemiological Investigation and Genetic Evolution Analysis of ORF5 Gene of Porcine Reproductive and Respiratory Syndrome Virus in Henan Province in 2020 [J]. Journal of Henan Agricultural Sciences, 2022, 51(3): 146-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||