Journal of Henan Agricultural Sciences ›› 2024, Vol. 53 ›› Issue (5): 1-9.DOI: 10.15933/j.cnki.1004-3268.2024.05.001
• Reviews • Previous Articles Next Articles
WANG Donghui1,WANG Aoxuan1,HE Changhai2,LIU Zhihao1,SHI Yongchun1,WANG Ran1,WANG Xiaoran1
Received:
2023-12-22
Published:
2024-05-15
Online:
2024-06-06
王东辉1,王奥轩1,何长海2,刘志豪1,石永春1,王燃1,王潇然1
通讯作者:
王潇然(1983-),男,河南郑州人,副教授,博士,主要从事植物生物化学与分子生物学研究。E-mail:xiaoranwang@henau.edu.cn
王燃(1983-),男,河南郑州人,副教授,博士,主要从事植物合成生物学研究。E-mail:wangran@henau.edu.cn
作者简介:
王东辉(1996-),男,河南周口人,在读硕士研究生,研究方向:植物合成生物学。E-mail:donghuiwang1996@126.com
基金资助:
CLC Number:
WANG Donghui, WANG Aoxuan, HE Changhai, LIU Zhihao, SHI Yongchun, WANG Ran, WANG Xiaoran. Progress on Application of Rational Design of Enzyme in Crop Breeding and Prospect[J]. Journal of Henan Agricultural Sciences, 2024, 53(5): 1-9.
王东辉, 王奥轩, 何长海, 刘志豪, 石永春, 王燃, 王潇然. 酶的理性设计在作物育种中的应用进展与前景展望[J]. 河南农业科学, 2024, 53(5): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hnnykx.org.cn/EN/10.15933/j.cnki.1004-3268.2024.05.001
[1]BURKI T.Food security and nutrition in the world[J].The Lancet Diabetes & Endocrinology,2022,10(9):622. [2]BEHNASSI M,EL HAIBA M.Implications of the Russia‑Ukraine war for global food security[J].Nature Human Behaviour,2022,6:754‑755. [3]WANG Y Q,DEMIRER G S.Synthetic biology for plant genetic engineering and molecular farming[J].Trends in Biotechnology,2023,41(9):1182‑1198. [4]PIXLEY K V,FALCK‑ZEPEDA J B,PAARLBERG R L,et al.Genome‑edited crops for improved food security of smallholder farmers[J].Nature Genetics,2022,54:364‑367. [5]ARNOLD F H. Directed evolution:Bringing new chemistry to life[J].Angewandte Chemie,2018,57(16):4143‑4148. [6]CHEN K,ARNOLD F H. Tuning the activity of an enzyme for unusual environments:Sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(12):5618‑5622. [7]WILSON R H,ALONSO H,WHITNEY S M. Evolving Methanococcoides burtonii archaeal Rubisco for improved photosynthesis and plant growth[J]. Scientific Reports,2016,6:22284. [8]HART J E,SULLIVAN S,HERMANOWICZ P,et al.Engineering the phototrop in photocycle improves photoreceptor performance and plant biomass production[J]. Proceedings of the National Academy of Sciences of the United States of America,2019,116(25) :12550‑12557. [9]LUTZ S. Beyond directed evolution: Semi‑rational protein engineering and design[J]. Current Opinion in Biotechnology,2010,21(6):734‑743. [10]CHENG F,ZHU L L,SCHWANEBERG U. Directed evolution 2. 0:Improving and deciphering enzyme properties[J]. Chemical Communications,2015,51(48):9760‑9772. [11]REETZ M T,BOCOLA M,CARBALLEIRA J D,et al.Expanding the range of substrate acceptance of enzymes:Combinatorial active‑site saturation test[J].Angewandte Chemie,2005,44(27):4192‑4196. [12]MA Y H,CHEN Q W,WANG Y Y,et al.Heteromerization of short‑chain trans‑prenyltransferase controls precursor allocation within a plastidial terpenoid network[J]. Journal of Integrative Plant Biology,2023,65(5):1170‑1182. [13]DONG C,QU G,GUO J G,et al.Rational design of geranylgeranyl diphosphate synthase enhances carotenoid production and improves photosynthetic efficiency in Nicotiana tabacum[J].Science Bulletin,2022,67(3):315‑327. [14]LIU Y,YAN Z H,LU X Y,et al. Improving the catalytic activity of isopentenyl phosphate kinase through protein coevolution analysis[J].Scientific Reports,2016,6:24117. [15]HUANG J Y,LIN Q P,FEI H Y,et al. Discovery of deaminase functions by structure‑based protein clustering[J].Cell,2023,186(15):3182‑3195. [16]ARNOLD F H. Combinatorial and computational challenges for biocatalyst design[J].Nature,2001,409:253‑257. [17]LI X L,CONG Y L,MA M Z,et al.An energy optimization strategy based on the perfect conformation of prolyl endopeptidase for improving catalytic efficiency[J].Journal of Agricultural and Food Chemistry,2020,68(18):5129‑5137. [18]LI J H,LIU G L,ZHEN Z Y,et al.Molecular docking for ligand‑receptor binding process based on heterogeneous computing[J]. Scientific Programming,2022,2022:9197606. [19]ALLEN W J,BALIUS T E,MUKHERJEE S,et al.DOCK 6:Impact of new features and current docking performance[J]. Journal of Computational Chemistry,2015,36(15):1132‑1156. [20]MORRIS G M,HUEY R,LINDSTROM W,et al.AutoDock4 and AutoDockTools4:Automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry,2009,30(16):2785‑2791. [21]TROTT O,OLSON A J. AutoDock Vina:Improving the speed and accuracy of docking with a new scoring function,efficient optimization,and multithreading[J].Journal of Computational Chemistry,2010,31(2):455‑461. [22]HUANG L,ZHANG W W,LI X H,et al. Point mutations in the catalytic domain disrupt cellulose synthase(CESA6) vesicle trafficking and protein dynamics[J].The Plant Cell,2023,35(7):2654‑2677. [23]DAGGETT V.Protein folding‑simulation[J].Chemical Reviews,2006,106(5):1898‑1916. [24]SONG S Y,JIN R T,CHEN Y F,et al. The functional evolution of architecturally different plant geranyl diphosphate synthases from geranylgeranyl diphosphate synthase[J]. The Plant Cell,2023,35(6):2293‑2315. [25]KOLLMAN P A,MASSOVA I,REYES C,et al.Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models[J]. Accounts of Chemical Research,2000,33(12):889‑897. [26]BU L T,BECKHAM G T,SHIRTS M R,et al.Probing carbohydrate product expulsion from a processive cellulase with multiple absolute binding free energy methods[J].Journal of Biological Chemistry,2011,286(20):18161‑18169. [27]PANDYA P N,KUMAR S P,BHADRESHA K,et al.Identification of promising compounds from curry tree with cyclooxygenase inhibitory potential using a combination of machine learning,molecular docking,dynamics simulations and binding free energy calculations[J].Molecular Simulation,2020,46(11):812‑822. [28]GALILI G,GALILI S,LEWINSOHN E,et al.Genetic,molecular,and genomic approaches to improve the value of plant foods and feeds[J].Critical Reviews in Plant Sciences,2002,21(3):167‑204. [29]FERNIE A R,TADMOR Y,ZAMIR D. Natural genetic variation for improving crop quality[J].Current Opinion in Plant Biology,2006,9(2):196‑202. [30]FERNIE A R,TRETHEWEY R N,KROTZKY A J,et al.Metabolite profiling:From diagnostics to systems biology[J].Nature Reviews Molecular Cell Biology,2004,5:763‑769. [31]CAI Y H,BHUIYA M W,SHANKLIN J,et al.Engineering a monolignol 4‑O‑methyltransferase with high selectivity for the condensed lignin precursor coniferyl alcohol[J]. Journal of Biological Chemistry,2015,290(44):26715‑26724. [32]HERRERA D P, CHÁNIQUE A M,MARTÍNEZ‑MÁRQUEZ A,et al.Rational design of resveratrol O‑methyltransferase for the production of pinostilbene[J].International Journal of Molecular Sciences,2021,22(9):4345. [33]ZHANG S,LI C,GILBERT R G,et al.Understanding the binding of starch fragments to granule‑bound starch synthase[J]. Biomacromolecules,American Chemical Society,2021,22(11):4730‑4737. [34]FEDOROFF N V,BATTISTI D S,BEACHY R N,et al.Radically rethinking agriculture for the 21st century[J].Science,2010,327:833‑834. [35]JAN R,ASAF S,NUMAN M,et al. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions[J].Agronomy,2021,11(5):968. [36]HAN Y,LI X J. Current progress in research focused on salt tolerance in Vitis vinifera L[J].Frontiers in Plant Science,2024,15:1353436. [37]PANDIAN B A,SATHISHRAJ R,DJANAGUIRAMAN M,et al. Role of cytochrome P450 enzymes in plant stress response[J]. Antioxidants,2020,9(5):454. [38]BRAVO A,LIKITVIVATANAVONG S,GILL S S,et al.Bacillus thuringiensis:A story of a successful bioinsecticide[J].Insect Biochemistry and Molecular Biology,2011,41(7):423‑431. [39]MAQSOOD S,AHMAD M,KHAN I H,et al. Evaluation of transgenic cotton cultivars containing cry toxins from Bacillus thuringiensis against thrips[J].Plant Protection,2022,6(2):161‑165. [40]HARDKE J T,LEONARD B R,HUANG F N,et al.Damage and survivorship of fall armyworm(Lepidoptera:Noctuidae) on transgenic field corn expressing Bacillus thuringiensis Cry proteins[J].Crop Protection,2011,30(2):168‑172. [41]LI C Y,WANG J Y,LING F,et al.Application and development of Bt insect resistance genes in rice breeding[J].Sustainability,2023,15(12):9779. [42]MANDAL C C, GAYEN S, BASU A, et al.Prediction‑based protein engineering of domain I of Cry2A entomocidal toxin of Bacillus thuringiensis for the enhancement of toxicity against lepidopteran insects[J].Protein Engineering,Design and Selection,2007,20(12):599‑606. [43]NICOLIA A,FERRADINI N,MOLLA G,et al.Expression of an evolved engineered variant of a bacterial glycine oxidase leads to glyphosate resistance in alfalfa[J].Journal of Biotechnology,2014,184:201‑208. [44]LIU Y,ZHANG X,YUAN G X,et al.A designer rice NLR immune receptor confers resistance to the rice blast fungus carrying noncorresponding avirulence effectors[J]. Proceedings of the National Academy of Sciences of the United States of America,2021,118(44):e2110751118. [45]DONG C,WANG Z W,QIN L L,et al.Overexpression of geranyl diphosphate synthase 1(NnGGPPS1)from Nelumbo nucifera enhances carotenoid and chlorophyll content and biomass[J].Gene,2023,881:147645. [46]ZHOU F,WANG C Y,GUTENSOHN M,et al. A recruiting protein of geranylgeranyl diphosphate synthase controls metabolic flux toward chlorophyll biosynthesis in rice[J].Proceedings of the National Academy of Sciences of the United States of America,2017,114(26):6866‑6871. [47]RUIZ‑SOLA M Á,COMAN D,BECK G,et al.Arabidopsis geranylgeranyl diphosphate synthase 11 is a hub isozyme required for the production of most photosynthesis‑related isoprenoids [J]. The New Phytologist,2016,209(1):252‑264. [48]WANG Q,HUANG X Q,CAO T J,et al. Heteromeric geranylgeranyl diphosphate synthase contributes to carotenoid biosynthesis in ripening fruits of red pepper(Capsicum annuum var. conoides)[J].Journal of Agricultural and Food Chemistry,2018,66(44):11691‑11700. [49]ALI M,MIAO L,SOUDY F A,et al.Overexpression of terpenoid biosynthesis genes modifies root growth and nodulation in soybean(Glycine max)[J]. Cells,2022,11(17):2622. [50]BARJA M V,RODRIGUEZ‑CONCEPCION M.Plant geranylgeranyl diphosphate synthases:Every(gene)family has a story[J]. aBIOTECH,2021,2(3):289‑298. [51]TRUDEAU D L,EDLICH‑MUTH C,ZARZYCKI J,et al.Design and in vitro realization of carbon‑conserving photorespiration[J].Proceedings of the National Academy of Sciences of the United States of America,2018,115(49):E11455‑E11464. [52]ZHOU Y,GUNN L H,BIRCH R,et al. Grafting Rhodobacter sphaeroides with red algae Rubisco to accelerate catalysis and plant growth[J]. Nature Plants,Nature Publishing Group,2023,9(6):978‑986. [53]邵洁,刘海利,王勇.植物合成生物学的现在与未来[J].合成生物学,2020,1(4):395‑412. SHAO J,LIU H L,WANG Y. Present and future of plant synthetic biology[J].Synthetic Biology Journal,2020,1(4):395‑412. [54]ENDY D. Foundations for engineering biology[J].Nature,2005,438:449‑453. [55]KEBEISH R,NIESSEN M,THIRUVEEDHI K,et al.Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana[J].Nature Biotechnology,2007,25:593‑599. [56]GE X Y,WANG P,WANG Y,et al.Development of an eco‑friendly pink cotton germplasm by engineering betalain biosynthesis pathway[J].Plant Biotechnology Journal,2023,21(4):674‑676. [57]SOUTH P F,CAVANAGH A P,LIU H W,et al.Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field[J]. Science,2019,363(6422):eaat9077. [58] WADA N,UETA R,OSAKABE Y,et al.Precision genome editing in plants:State‑of‑the‑art in CRISPR/Cas9‑based genome engineering[J].BMC Plant Biology,2020,20(1):234. [59]SHEN B,ZHANG W S,ZHANG J,et al.Efficient genome modification by CRISPR‑Cas9 nickase with minimal off‑target effects[J]. Nature Methods,2014,11:399‑402. [60]CONG L,RAN F A,COX D,et al. Multiplex genome engineering using CRISPR/Cas systems[J].Science,2013,339(6121):819‑823. [61]KOMOR A C,KIM Y B,PACKER M S,et al.Programmable editing of a target base in genomic DNA without double‑stranded DNA cleavage[J].Nature,2016,533:420‑424. [62]ADLI M.The CRISPR tool kit for genome editing and beyond[J].Nature Communications,2018,9:1911. [63]ANZALONE A V,RANDOLPH P B,DAVIS J R,et al.Search‑and‑replace genome editing without double‑strand breaks or donor DNA[J].Nature,2019,576:149‑157. [64]TANG X,SRETENOVIC S,REN Q R,et al. Plant prime editors enable precise gene editing in rice cells[J].Molecular Plant,2020,13(5):667‑670. [65]LIN Q P,ZONG Y,XUE C X,et al.Prime genome editing in rice and wheat[J].Nature Biotechnology,2020,38:582‑585. [66]JIANG Y Y,CHAI Y P,LU M H,et al.Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize[J].Genome Biology,2020,21(1):257. [67]LU Y M,TIAN Y F,SHEN R D,et al.Precise genome modification in tomato using an improved prime editing system[J]. Plant Biotechnology Journal,2021,19(3):415‑417. [68]MOLLA K A,SRETENOVIC S,BANSAL K C,et al.Precise plant genome editing using base editors and prime editors[J]. Nature Plants,2021,7:1166‑1187. [69]STEFANOVA L,KOSTADINOVA S,ATANASSOV A,et al. Transgenic techniques for plant improvement:A brief overview[M]//RAINA A,WANI M R,LASKAR R A,et al. Advanced crop improvement. Cham:Springer,2023:95‑109. [70]ALTPETER F,SPRINGER N M,BARTLEY L E,et al.Advancing crop transformation in the era of genome editing[J].The Plant Cell,2016,28(7):1510‑1520. [71]WANG K,SHI L,LIANG X N,et al.The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation[J].Nature Plants,2022,8:110‑117. [72]CHEN L,CAI Y P,LIU X J,et al.Improvement of soybean Agrobacterium‑mediated transformation efficiency by adding glutamine and asparagine into the culture media[J].International Journal of Molecular Sciences,2018,19(10):3039. [73]CUNNINGHAM F J,GOH N S,DEMIRER G S,et al.Nanoparticle‑mediated delivery towards advancing plant genetic engineering[J].Trends in Biotechnology,2018,36(9):882‑897. [74]WU C F,LIN J S,SHAW G C,et al. Acid‑induced type Ⅵ secretion system is regulated by ExoR‑ChvG/ChvI signaling cascade in Agrobacterium tumefaciens[J].PLoS Pathogens,2012,8(9):e1002938. [75]LIN J S,MA L S,LAI E M.Systematic dissection of the agrobacterium type Ⅵ secretion system reveals machinery and secreted components for subcomplex formation[J].PLoS One,2013,8(7):e67647. [76]WOO J W,KIM J,KWON S I,et al. DNA‑free genome editing in plants with preassembled CRISPR‑Cas9 ribonucleoproteins[J].Nature Biotechnology,2015,33:1162‑1164. [77]SVITASHEV S,YOUNG J K,SCHWARTZ C,et al.Targeted mutagenesis,precise gene editing,and site‑specific gene insertion in maize using Cas9 and guide RNA[J].Plant Physiology,2015,169(2):931‑945. |
[1] | HUANG Qiuyue, HE Jianqing, LIU Haixin, NIE Zifang, XU Dong, PAN Changmang. Screening and Identification of Efficient Degradation Fungi for Garden Waste Lignocellulose [J]. Journal of Henan Agricultural Sciences, 2024, 53(5): 101-111. |
[2] | LI Shouqiang, TIAN Jiachun, GE Xia, LI Mei, CHENG Jianxin, LI Yumei, TIAN Shilong. Effect of Different Preservative Bags on Postharvest Storage Quality of Mini⁃Tuber Seed Potatoes from Aeroponic System [J]. Journal of Henan Agricultural Sciences, 2024, 53(4): 152-160. |
[3] | ZHANG Yinqiang, HAO Jianxiu, ZHAO Yuanzheng, WANG Dong, ZHOU Hongyou. Study on the Control Effect of Potato Fusarium Wilt by Co‐culture of Trichoderma asperellum PT‐29 and Bacillus subtilis S‐16 [J]. Journal of Henan Agricultural Sciences, 2024, 53(3): 95-102. |
[4] | KONG Fandan, ZHOU Lijun, ZHENG Meiyu, ZHANG Zuohe, YANG Zeyi, WU Juan. Effects of Straw Mulching on Soil Microbial Biomass,Enzyme Activity,and Soybean Yield in Black Soil Areas [J]. Journal of Henan Agricultural Sciences, 2024, 53(1): 87-95. |
[5] | YU Gao, CHEN Fen, TIAN Xia, LU Xin, TENG Minghuan, XIE Wanying. Effects of Winter Mulching on Soil Chemical Properties and Enzyme Activities in Young Citrus Orchards [J]. Journal of Henan Agricultural Sciences, 2023, 52(9): 91-101. |
[6] | XIN Longfei, LOU Chuang, JI Baoyi, LIU Hongyun, ZHANG Yanling. Effects of Drought Stress on Photosynthesis and Physiological Characteristics of Platycodon grandiflorum [J]. Journal of Henan Agricultural Sciences, 2023, 52(8): 69-77. |
[7] | YU Gao, WANG Hai, MO Zhongmei, CHEN Fen. Rhizome Quality Characteristics of Polygonatum rhizoma in Different Habitats and Driving Factors in Rhizosphere Soil Environment [J]. Journal of Henan Agricultural Sciences, 2023, 52(12): 57-68. |
[8] | LIU Wei, ZHAO Yuanyuan, CHEN Xiaolong, WEI Jianyu, LI Juan, XIE Tianqi, SHI Hongzhi. Effects of Different Organic Fertilizers on Soil Nitrogen Mineralization and Enzyme Activity in the Tobacco Growing Areas of Central Henan and Western Yunnan [J]. Journal of Henan Agricultural Sciences, 2023, 52(11): 85-93. |
[9] | YU Minmin, FAN Wenhua, LIU Fenwu, TIAN Ludan, WANG Gailing, MENG Qinghui. Effects of Silicon and Selenium on Photosynthesis and Antioxidant Enzyme System of Cucumber Seedlings under Cadmium Stress [J]. Journal of Henan Agricultural Sciences, 2023, 52(1): 116-124. |
[10] | WANG Weidong, TENG Man, ZHENG Luping, LIU Jinling, ZHANG Wenkai, LI Linyan, ZHANG Zhihui, FAN Jianming, LUO Jun. Effect of miR‑M11 Gene Editing on Replication of Marek’s Disease Virus in Vitro [J]. Journal of Henan Agricultural Sciences, 2023, 52(1): 134-143. |
[11] | WANG Yongsheng, ZHU Shuifen, CHEN Song, CHEN Yunming, JIANG Ya, FAN Yonghui, YANG Qihui, LI Qiongyan, YANG Hai. Effects of Artificial Diet and Mulberry Leaves on Activities of Three Metabolic Enzymes in Bombyx mori [J]. Journal of Henan Agricultural Sciences, 2023, 52(1): 154-160. |
[12] | YIN Quanyu, KUANG Zhihao, WANG Jing, REN Tianbao, ZHANG Songtao, JI Xiaoming, LIU Guoshun, MU Yaohui. Physiological Responses of Different Black Shank⁃Resistance Flue⁃cured Tobacco Varieties to Trichoderma harzianum [J]. Journal of Henan Agricultural Sciences, 2022, 51(9): 88-98. |
[13] | ZHAN Lei, WANG Han, GUAN Luohao, ZHANG Mengmeng, LIANG Junyang, ZHANG Xiaorui, FU Bo, WANG Yusheng. Fermentation Condition Optimization of Bacillus thuringiensis SY⁃1 Producing Amylase Used for Improving Tobacco Quality [J]. Journal of Henan Agricultural Sciences, 2022, 51(9): 159-170. |
[14] | GUO Hui, ZHOU Hui, ZHUANG Jingjing, WANG Xiaobing. Effects of Arbuscular Mycorrhizal Fungi on Wheat Physiological Characteristics and Rhizosphere Soil Enzyme Activities under Cadmium Stress [J]. Journal of Henan Agricultural Sciences, 2022, 51(8): 20-27. |
[15] | QUAN Wei, ZHENG Chengzhong, DONG Baozhu, MENG Huanwen, SUN Ruifeng, ZHOU Hongyou. Allelopathic Inhibition Effect of Brassica campestris L.Aqueous Extract on Four Kinds of Weeds and Field Application [J]. Journal of Henan Agricultural Sciences, 2022, 51(7): 102-111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||