[1]国家统计局.年度数据农业主要农作物播种面积、产品产量[DB/OL].[2025‐06‐18]. https://data. stats. gov.
cn/easyquery. htm?cn=C01.
National Bureau of Statistics. Annual data—Agriculture—Sown area and output of major crops [DB/OL].[2025‐06‐18]. https://data. stats. gov. cn/easyquery. htm?cn=C01.
[2]联合国粮食及农业组织. 粮农组织统计数据库:2023年芝麻产量排名前十的国家[EB/OL].[2025‐06‐18].https://www. fao. org/faostat/zh/#rankings/countries_by_commodity.
Food and Agriculture Organization of the United Nations.FAOSTAT database:Top 10 countries by sesame production in 2023 [EB/OL].[2025‐06‐18].https://www.fao.org/faostat/en/#rankings/countries_by_commodity.
[3]黄尚琼. 中国栽培芝麻资源的品质状况[J]. 中国农业科学,1994,27(1):12‐17.
HUANG S Q. Quality status of cultivated sesame resources in China[J]. Scientia Agricultura Sinica,1994,27(1):12‐17.
[4]王卫东. 芝麻油中芝麻素的保健功能[J]. 中国食物与营养,2005,11(6):49‐50.
WANG W D. Health care function of sesamin in sesame oil[J]. Food and Nutrition in China,2005,11(6):49‐50.
[5]李丽丽. 世界芝麻病害研究进展[J]. 中国油料,1993,15(2):75‐77.
LI L L. Research progress of sesame diseases in the world[J]. Chinese Journal of Oil Crop Sciences,1993,15 (2):75‐77.
[6]王林海,黎冬华,张艳欣,等. 我国芝麻主产区茎点枯病病原菌生物学特性分析[J].华北农学报,2011,26(4):232‐238.
WANG L H,LI D H,ZHANG Y X,et al. Biological characteristics of the pathogen causing sesame charcoal rot from the main sesame production areas in China[J].Acta Agriculturae Boreali‐Sinica,2011,26(4):232‐238.
[7]周红英,孙建,饶月亮,等. 芝麻种质资源茎点枯病抗性鉴定研究[J]. 江西农业学报,2013,25(10):57‐59.
ZHOU H Y,SUN J,RAO Y L,et al. Identification studies on resistance of sesame germplasm resources to Macrophomina phaseoli[J].Acta Agriculturae Jiangxi,2013,25(10):57‐59.
[8]BAIRD R E,WATSON C E,SCRUGGS M. Relative longevity of Macrophomina phaseolina and associated mycobiota on residual soybean roots in soil[J]. Plant Disease,2003,87(5):563‐566.
[9]GHABRIAL S A, SUZUKI N. Viruses of plant pathogenic fungi[J]. Annual Review of Phytopathology,2009,47:353‐384.
[10]GHABRIAL S A,CASTÓN J R,JIANG D H,et al. 50‐plus years of fungal viruses[J]. Virology,2015,479:356‐368.
[11]NUSS D L. Hypovirulence: Mycoviruses at the fungal‐plant interface[J]. Nature Reviews Microbiology,2005,3(8):632‐642.
[12]XIE J T,JIANG D H. New insights into mycoviruses and exploration for the biological control of crop fungal diseases[J]. Annual Review of Phytopathology,2014,52:45‐68.
[13]RIGLING D,PROSPERO S. Cryphonectria parasitica,the causal agent of chestnut blight:Invasion history,population biology and disease control[J]. Molecular Plant Pathology,2018,19(1):7‐20.
[14]ZHANG H X,XIE J T,FU Y P,et al. A 2‐kb mycovirus converts a pathogenic fungus into a beneficial endophyte for Brassica protection and yield enhancement[J]. Molecular Plant,2020,13(10):1420‐1433.
[15]TIAN B N,XIE J T,FU Y P,et al. A cosmopolitan fungal pathogen of dicots adopts an endophytic lifestyle on cereal crops and protects them from major fungal diseases[J]. The ISME Journal,2020,14(12):3120‐3135.
[16]WANG J,NI Y X,LIU X T,et al. Divergent RNA viruses in Macrophomina phaseolina exhibit potential as virocontrol agents[J]. Virus Evolution,2020,7(1):veaa095.
[17]MARZANO S L,NELSON B D,AJAYI‐OYETUNDE O,et al. Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens[J]. Journal of Virology,2016,90(15):6846‐6863.
[18]WU M D,ZHANG L,LI G Q,et al. Hypovirulence and double‐stranded RNA in Botrytis cinerea[J].Phytopathology,2007,97(12):1590‐1599.
[19]ZHAO X B,NI Y X,LIU X T,et al. A simple and effective technique for production of pycnidia and pycnidiospores by Macrophomina phaseolina[J]. Plant Disease,2020,104(4):1183‐1187.
[20]TWIZEYIMANA M,HILL C B,PAWLOWSKI M,et al.A cut‐stem inoculation technique to evaluate soybean for resistance to Macrophomina phaseolina[J]. Plant Disease,2012,96(8):1210‐1215.
[21]王婧,倪云霞,何碧珀,等. 一株菜豆壳球孢菌株及其在生物防治方面的应用:CN114921349A[P].2022‐08‐19.
WANG J,NI Y X,HE B B,et al. A strain of Macrophomina phaseoli and its application in biological control:CN114921349A[P]. 2022‐08‐19.
[22]LI P F,WANG S C,ZHANG L H,et al. A tripartite ssDNA mycovirus from a plant pathogenic fungus is infectious as cloned DNA and purified virions[J].Science Advances,2020,6(14):eaay9634.
[23]OKADA R,ICHINOSE S,TAKESHITA K,et al.Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two‐sided effects:Down‐regulation of host growth and up‐regulation of host plant pathogenicity[J]. Virology,2018,519:23‐32.
[24]王鹏,李笃花,张绍辉,等. 玉米纹枯病菌中新减毒病毒RsHV4的特征研究[J].河南农业科学,2024,53(2):92‐100.
WANG P,LI D H,ZHANG S H,et al. Characterization of a novel hypovirus RsHV4 in the phytopathogenic fungus Rhizoctonia solani[J].Journal of Henan Agricultural Sciences,2024,53(2):92‐100.
[25]BARTHOLOMÄUS A,WIBBERG D,WINKLER A,et al. Deep sequencing analysis reveals the mycoviral diversity of the virome of an avirulent isolate of Rhizoctonia solani AG‐2‐2 IV[J]. PLoS One,2016,11 (11):e0165965.
[26]HAI D,LI J C,LAN S S,et al. Discovery and evolution of Six positive‐sense RNA viruses co‐infecting the hypovirulent strain SCH733 of Sclerotinia sclerotiorum[J].Phytopathology,2022,112(11):2449‐2461.
[27]HAO F M,DING T,WU M D,et al. Two novel hypovirulence‐associated mycoviruses in the phytopathogenic fungus Botrytis cinerea:Molecular characterization and suppression of infection cushion formation[J]. Viruses,2018,10(5):254.
[28]KAUR S,DHILLON G S,BRAR S K,et al. Emerging phytopathogen Macrophomina phaseolina:Biology,economic importance and current diagnostic trends[J].Critical Reviews in Microbiology,2012,38(2):136‐151.
[29]倪云霞,王飞,刘玉霞,等. 芝麻茎点枯病菌的生物学特性及9种杀菌剂对其抑制作用测定[J].河南农业科学,2016,45(6):72‐76.
NI Y X,WANG F,LIU Y X,et al. Biological characteristics of the pathogen of sesame stem blight and inhibitory effects of nine fungicides[J].Journal of Henan Agricultural Sciences,2016,45(6):72‐76.
[30]杨修身,薛香云,杨永东. 杀菌剂对芝麻茎点枯菌抑制效果测定[J].河南农业科学,1989,18(7):18‐19.
YANG X S,XUE X Y,YANG Y D. Inhibitory effect of fungicides on Fusarium oxysporum in sesame[J].Journal of Henan Agricultural Sciences,1989,18(7):18‐19.
[31]VASEBI Y,SAFAIE N,ALIZADEH A. Biological control of soybean charcoal root rot disease using bacterial and fungal antagonists in vitro and greenhouse condition[J]. Journal of Crop Protection,2013(22):139‐150.
[32]SEGERS G C,VAN WEZEL R,ZHANG X M,et al.Hypovirus papain‐like protease p29 suppresses RNA silencing in the natural fungal host and in a heterologous plant system[J].Eukaryotic Cell,2006,5 (6):896‐904.
[33]KLIONSKY D J,ABDELMOHSEN K,ABE A,et al.Guidelines for the use and interpretation of assays for monitoring autophagy(3rd edition)[J]. Autophagy,2016,12(1):1‐222.
[34]SHI L M,WANG J Z,QUAN R,et al. CpATG8,a homolog of yeast autophagy protein ATG8,is required for pathogenesis and hypovirus accumulation in the chest blight fungus[J]. Frontiers in Cellular and Infection Microbiology,2019,9:222.
[35]ZHOU L L,LI X P,KOTTA‐LOIZOU I,et al. A mycovirus modulates the endophytic and pathogenic traits of a plant associated fungus[J].The ISME Journal,2021,15(7):1893‐1906.
[36]LIU H,WANG H,LIAO X L,et al. Mycoviral gene integration converts a plant pathogenic fungus into a biocontrol agent[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(50):e2214096119.
|