[1]樊东东,李强子,王红岩,等.通过训练样本采样处理改善小宗作物遥感识别精度[J].遥感学报,2019,23(4):730‑742.
FAN D D,LI Q Z,WANG H Y,et al.Improvement in recognition accuracy of minority crops by resampling of
imbalanced training datasets of remote sensing[J].Journal of Remote Sensing,2019,23(4):730‑742.
[2]王娜,李强子,杜鑫,等.单变量特征选择的苏北地区主要农作物遥感识别[J].遥感学报,2017,21(4):519‑530.
WANG N,LI Q Z,DU X,et al. Identification of main crops based on the univariate feature selection in Subei[J].Journal of Remote Sensing,2017,21(4):519‑530.
[3]张健康,程彦培,张发旺,等.基于多时相遥感影像的作物种植信息提取[J].农业工程学报,2012,28(2):134‑141.
ZHANG J K,CHENG Y P,ZHANG F W,et al.Crops planting information extraction based on multi‑temporal remote sensing images[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(2) :134‑141.
[4]朱文泉,潘耀忠,龙中华,等.基于GIS和RS的区域陆地植被NPP估算:以中国内蒙古为例[J].遥感学报,2005,9(3):300‑307.
ZHU W Q,PAN Y Z,LONG Z H,et al.Estimating net primary productivity of terrestrial vegetation based on GIS and RS:A case study in inner Mongolia,China[J].Journal of Remote Sensing,2005,9(3):300‑307.
[5]张爽,刘雪华,靳强.决策树学习方法应用于生境景观分类[J].清华大学学报(自然科学版),2006,46(9):1564‑1567.
ZHANG S,LIU X H,JIN Q.Decision tree learning for habitat landscape classification[J].Journal of Tsinghua University(Science and Technology),2006,46(9):1564‑1567.
[6]许淇.基于随机森林算法的遥感分类方法优化研究:以青铜峡灌区为例[D].太谷:山西农业大学,2019.
XU Q.Research on optimization of remote sensing classification methods based on random forest algorithm:A case of Qingtongxia irrigation district[D].Taigu:Shanxi Agricultural University,2019.
[7]沈峰,石璞,井逢瑞.基于Sentinel-2影像的吉林省中部黑土区保护性耕作范围的遥感识别[J].世界地质,2022,41(4):873‑881.
SHEN F,SHI P,JING F R.Remote sensing identification of conservation tillage extent in black soil region in central Jilin Province based on Sentinel‑2 image[J].World Geology,2022,41(4):873‑881.
[8]尚明,马杰,李悦,等.Landsat和GF数据面向对象土地覆盖分类研究[J/OL].自然资源遥感,2023:1‑8[2023‑12‑26].https://kns.cnki.net/kcms/detail/10.1759.P.20231225.1527.010.html.
SHANG M,MA J,LI Y,et al.Research on object‑oriented land cover classification of Landsat and GF data[J/OL].Remote Sensing for Natural Resources,2023:1‑8[2023‑12‑26].https://kns.cnki.net/kcms/detail/10.1759.P.20231225.1527.010.html.
[9]刘杰,刘吉凯,安晶晶,等.基于时序Landsat 8 OLI多特征与随机森林算法的作物精细分类研究[J].干旱地区农业研究,2020,38(3):281‑288.
LIU J,LIU J K,AN J J,et al.Precise crop classification based on multi‑features from time‑series Landsat 8 OLI
images and random forest algorithm[J].Agricultural Research in the Arid Areas,2020,38(3):281‑288.
[10]张东彦,戴震,徐新刚,等.基于时序Sentinel-2影像的现代农业园区作物分类研究[J].红外与激光工程,2021,50(5):262‑272.
ZHANG D Y,DAI Z,XU X G,et al.Crop classification of modern agricultural park based on time‑series Sentinel‑2 images[J].Infrared and Laser Engineering,2021,50(5):262‑272.
[11]申文明,王文杰,罗海江,等.基于决策树分类技术的遥感影像分类方法研究[J].遥感技术与应用,2007,22(3):333‑338.
SHEN W M,WANG W J,LUO H J,et al.Classification methods of remote sensing image based on decision tree technologies[J].Remote Sensing Technology and Application,2007,22(3):333‑338.
[12]田静,王卷乐,李一凡,等.基于决策树方法的蒙古高原土地覆盖遥感分类:以蒙古国中央省为例[J].地球信息科学学报,2014,16(3):460‑469.
TIAN J,WANG J L,LI Y F,et al.Land cover classification in Mongolian Plateau based on decision tree method:A case study in Tov Province,Mongolia[J].Journal of Geo‑Information Science,2014,16(3):460‑469.
[13]何昭欣,张淼,吴炳方,等.Google Earth Engine支持下的江苏省夏收作物遥感提取[J].地球信息科学学报,2019,21(5):752‑766.
HE Z X,ZHANG M,WU B F,et al.Extraction of summer crop in Jiangsu based on Google Earth Engine[J].Journal of Geo‑Information Science,2019,21(5):752‑766.
[14]黄健熙,侯矞焯,苏伟,等.基于GF-1 WFV数据的玉米与大豆种植面积提取方法[J].农业工程学报,2017,33(7):164‑170.
HUANG J X,HOU Y Z,SU W,et al.Mapping corn and soybean cropped area with GF‑1 WFV data[J].Transactions of the Chinese Society of Agricultural Engineering,2017,33(7):164‑170.
[15]王振兴,刘东,王敏.基于GEE平台和多维特征优选的粮食作物提取:以西辽河流域为例[J].江苏农业科学,2023,51(21):200‑208.
WANG Z X,LIU D,WANG M.Extraction of grain crop based on multidimensional feature optimization and GEE platform:Taking western Liaohe River Basin as an example[J].Jiangsu Agricultural Sciences,2023,51(21):200‑208. [16]MATHER P M,KOCH M.Computer processing of remotely‑sensed images[M].Hoboken:John Wiley &Sons,2010.
[17]CALDWELL A. Introduction to remote sensing[J].ThePhotogrammetric Record,2003,18(103):259.
[18]朱秀芳,潘耀忠,张锦水,等.训练样本对TM尺度小麦种植面积测量精度影响研究(Ⅰ):训练样本与分类方法间分类精度响应关系研究[J].遥感学报,2007,11 (6):826‑837.
ZHU X F,PAN Y Z,ZHANG J S,et al.The effects of training samples on the wheat planting area measure
accuracy in TM scale(Ⅰ):The accuracy response of different classifiers to training samples[J].Journal of Remote Sensing,2007,11(6):826‑837.
[19]阎静,王汶,李湘阁.利用神经网络方法提取水稻种植面积:以湖北省双季早稻为例[J].遥感学报,2001,5 (3):227‑230.
YAN J,WANG W,LI X G.Extracting the rice planting areas using an artificial neural network[J].Journal of Remote Sensing,2001,5(3):227‑230.
[20]BREIMAN L. Random forests[J].Machine Learning,2001,45(1):5‑32.
[21]王利民,刘佳,杨玲波,等.随机森林方法在玉米-大豆精细识别中的应用[J].作物学报,2018,44(4):569‑580.
WANG L M,LIU J,YANG L B,et al.Application of random forest method in maize‑soybean accurate identification[J].Acta Agronomica Sinica,2018,44 (4):569‑580.
[22]MCNAIRN H,PROTZ R.Mapping corn residue cover on agricultural fields in Oxford County,Ontario,using thematic mapper[J].Canadian Journal of Remote Sensing,1993,19(2):152‑159.
[23]QI J,HUETE A R,MORAN M S,et al.Interpretation of vegetation indices derived from multi‑temporal SPOT images[J].Remote Sensing of Environment,1993,44(1):89‑101.
[24]王娜.江苏省主要农作物遥感识别特征的时空效应研究[D].北京:中国科学院大学(中国科学院遥感与数字地球研究所),2017.
WANG N.Temporal and spatial characteristics of crop identification features in Jiangsu Province[D].Beijing:University of Chinese Academy of Sciences(Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences),2017.
[25]金晶.基于纹理特征的高分辨率遥感影像分类方法研究[D].长沙:中南大学,2013.
JIN J.Research of high resolution remote sensing image classification based on texture[D].Changsha:Central South University,2013.
[26]韦春桃,王宁,张利恒,等.基于纹理特征的高分辨率遥感影像分类方法[J].桂林理工大学学报,2013,33 (1):80‑85.
WEI C T,WANG N,ZHANG L H,et al.Remote sensing image classification based on texture features[J].Journal of Guilin University of Technology,2013,33(1):80‑85.
[27] 吴健平,杨星卫.遥感数据监督分类中训练样本的纯化[J].国土资源遥感,1996,8(1):36‑41.
WU J P,YANG X W.Purification of training samples in supervised classification of remote sensing data[J].Remote Sensing for Natural Resources,1996,8(1):36‑41.
[28]钟琪,罗津,齐述华.随机森林分类算法提取柑橘果园的样本数量敏感性分析[J].江西科学,2019,37(5):664‑669.
ZHONG Q,LUO J,QI S H.Sample sensitivity analysis of citrus orchards extracted by random forest classification algorithm[J].Jiangxi Science,2019,37 (5):664‑669.
[29]潘洪涛,王轩,王晓飞.训练样本对农作物遥感分类的精度影响研究[J].红外与激光工程,2017,46(S1):149‑156.
PAN H T,WANG X,WANG X F.Study on the effect of training samples on the accuracy of crop remote sensing classification[J].Infrared and Laser Engineering,2017,46(S1):149‑156.
[30]SHUKLA G,GARG R D,SRIVASTAVA H S,et al.Performance analysis of different predictive models for crop classification across an aridic to ustic area of Indian states[J].Geocarto International,2018,33(3):240‑259.
[31]张丰,熊桢,寇宁.高光谱遥感数据用于水稻精细分类研究[J].武汉理工大学学报,2002,24(10):36‑39.
ZHANG F,XIONG Z,KOU N.Airborne hyperspectral remote sensing image data is used for rice precise classification[J].Journal of Wuhan University of Technology,2002,24(10):36‑39.
[32]贾坤,李强子.农作物遥感分类特征变量选择研究现状与展望[J].资源科学,2013,35(12):2507‑2516.
JIA K,LI Q Z.Review of features selection in crop classification using remote sensing data[J].Resources Science,2013,35(12):2507‑2516.
[33]刘亮,姜小光,李显彬,等.利用高光谱遥感数据进行农作物分类方法研究[J].中国科学院研究生院学报,2006,23(4):484‑488.
LIU L,JIANG X G,LI X B,et al.Study on classification of agricultural crop by hyperspectral remote sensing data[J].Journal of the Graduate School of the Chinese Academy of Sciences,2006,23(4):484‑488.
[34]王文静,张霞,赵银娣,等.综合多特征的Landsat 8时序遥感图像棉花分类方法[J].遥感学报,2017,21 (1):115‑124.
WANG W J,ZHANG X,ZHAO Y D,et al.Cotton extraction method of integrated multi‑features based on multitemporal Landsat 8 images[J].Journal of Remote Sensing,2017,21(1):115‑124.
|