[1] KRIZHEVSKY
A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional
neuralnetworks[J].
Communications of the ACM,2017,60(6): 84‑90.
[2] SIMONYAN
K,ZISSERMAN A. Very deep convolutionalnetworks for large‑scale
image recognition[EB/OL].(2015‑04‑10)[ 2023‑05‑10]. https://arxiv.
org/abs/ 1409. 1556.
[3] SZEGEDY
C,LIU W,JIA
Y Q,et al. Going deeper with convolutions[C]//2015
IEEE Conference on ComputerVision and Pattern Recognition(CVPR).
Boston,MA,USA:IEEE,2015:1‑9.
[4] HE
K M,ZHANG X Y,REN S Q,et
al. Deep residual learning for image recognition[C]//2016
IEEE Conference on Computer Vision and Pattern Recognition(CVPR).
Las Vegas,NV,USA:IEEE,2016:770‑778.
[5]李伟豪,詹炜,周婉,等.轻量型
Yolov7-TSA网络在茶叶病害检测识别中的研究与应用[J].河南农业科学,
2023,52(5):162‑169.
LI W H,ZHAN W,ZHOU W,et al. Research and application of lightweight Yolov7‑TSA network in
teadisease detection and identification[J].Journal of Henan Agricultural Sciences,2023,52(5)62‑169.
[6]王川,赵恒滨,李国强,等.基于改进 YOLOX模型的芝麻蒴果检测方法研究[ J].河南农业科学, 2022,51(11):155‑162.
WANG C,ZHAO H B,LI G Q,et al. Detection method of sesame capsules based on improved YOLOX model[J].Journal of
Henan Agricultural Sciences,2022,51(11):155‑162.
[7]任意平,夏国强,李俊丽 .基于优化 AlexNet的花卉识别[J].电子测量技术,
2020,43(19):94‑98.
REN Y P,XIA G Q,LI
J L.Flower recognition based on optimized AlexNet[J].Electronic
Measurement Technology,2020,43(19)4‑98.
[8]熊举举,徐杨,范润泽,等.基于轻量化视觉 Transformer的花卉识别[J].图学学报, 2023,44(2):271‑279. XIONG J
J,XU Y,FAN R Z,et al. Flowers recognitionbased on lightweight visual
transformer[J]. Journal of
Graphics,2023,44(2):271‑279.
[9] CAO S,SONG B. Visual attentional‑driven deep learning method
for flower recognition[J]. Mathematical Biosciences and Engineering,2021,18(3):1981‑1991.
[10] CLBUK M,BUDAK U,GUO Y H,et al. Efficient deepfeatures selections and classification
for flower speciesrecognition[J]. Measurement,2019,137:7‑13.
[11] PEREIRA‑FERRERO
V H,VALEM L P,EDRONETTE D C G.
Feature augmentation based on manifold rankingand LSTM for image classification[J]. Expert Systems
with Applications,2023,213:118995.
[12] ELSKEN T,METZEN J H,HUTTER F. Neural
architecture search:A survey[J]. Journal of
Machine Learning Research,2019,20(55):1‑21.
[13] ZOPH B,LE Q V. Neural architecture search withreinforcement
learning[EB/OL].(2017‑02‑15)[2023‑05‑10]. https://arxiv.
org/abs/1611. 01578.
[14] HSU C H,CHANG S H,LIANG J H,et al. MONAS: Multi‑objective Neural Architecture Search using
reinforcement learning[EB/OL].(2018‑12‑03)[2023‑05‑10]. https://arxiv. org/abs/1806. 10332.
[15] LIU H X,SIMONYAN K,VINYALS O,et al. Hierarchical representations for efficient
architecturesearch[EB/OL].(2018‑02‑22)[2023‑05‑10]. http:// arxiv. org/abs/1711. 00436.
[16] ZHONG Z,YANG Z C,DENG B Y,et al. Blockqnn: Efficient Block‑wise neural network architecture
generation[J]. IEEE Transactions
on Pattern Analysisand Machine Intelligence,2021,43(7):2314‑2328.
[17] PHAM H,GUAN M Y,ZOPH B,et al.Efficient neural architecture search via
parameters sharing[C]//2018 International Conference on Machine Learning.
Stockholm,Sweden:PMLR,2018:4095‑4104.
[18] BROCK A,LIM T,RITCHIE J M,et al. SMASH: One‑shot Model Architecture Search through HyperNetworks[EB/OL].(2017‑08‑17)[2023‑05‑10]. https://arxiv.
org/abs/1708. 05344.
[19] LIU
H X,SIMONYAN K,YANG Y M. DARTS:Differentiable architecture search[EB/OL].(2019‑04‑23)[2023‑05‑10]. http://arxiv. org/abs/1806. 09055.
[20] FANG J M,SUN Y Z,ZHANG Q,et al. Densely connected search space for more flexible
neural architecture search[C]//2020 IEEE/CVF Conferenceon Computer Vision and Pattern
Recognition(CVPR). Seattle,WA,USA:IEEE,2020:10625‑10634.
[21] HU J,SHEN L,SUN G. Squeeze‑and‑excitation
networks[C]//2018 IEEE/CVF
Conference on Computer Visionand Pattern Recognition. Salt Lake City,UT,USA:IEEE,2018:7132‑7141.
[22] WOO S,PARK J,LEE J Y,et al. CBAM:convolutional block attention module[C]//2018 European
Conferenceon Computer Vision. Tel Aviv,Israel:Springer,2018: 3‑19.
[23] WANG Q L,WU B G,ZHU P F,et al. ECA‑net: Efficient channel attention for deep convolutional neural
networks[C]//2020 IEEE/CVF
Conference onComputer Vision and Pattern Recognition(CVPR). Seattle,WA,USA:IEEE,2020:11531‑11539.
[24] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.
Rethinking the inception architecture for computer vision[C]//2016 IEEE
Conference on Computer Visionand Pattern Recognition(CVPR). Las Vegas,NV,USA: IEEE,2016:2818‑2826.
[25] HOWARD A G,ZHU M L,CHEN B,et al. MobileNets: Efficient convolutional neural networks for mobile vision
applications[EB/OL].(2017‑04‑17)[ 2023‑05‑10]. http://arxiv.
org/abs/1704. 04861.
[26] XU Y H,XIE L X,ZHANG X P,et al. PC‑DARTS: Patial channel connections for memory efficient
differentiable architecture search[EB/OL].(2020‑04‑07)[2023‑05‑10]. http://arxiv.
org/abs/1907. 05737.
[27] CHU X X,ZHANG B. Noisy differentiable architectu‑re search[EB/OL].(2021‑10‑17)[2023‑05‑10]. https:// arxiv.
org/abs/2005. 03566.
[28] SUN Z,HU Y,LU S,et al. AGNAS:Attention‑guided micro and macro‑architecture search[C]//2022
International Conference on Machine Learning. Baltimore,USA:PMLR,2022:20777‑20789.
[29]尹红,符祥,曾接贤,等.选择性卷积特征融合的花卉图像分类[ J].中国图象图形学报, 2019,24(5): 762‑772. YIN H,FU X,ZENG J X,et al. Flower image classification with selective
convolutional descriptor aggregation[J]. Journal of
Image and Graphics,2019,24(5):762‑772.
[30]杨旺功,淮永建 .多层特征融合及兴趣区域的花卉图像分类[ J].哈尔滨工程大学学报, 2021,42(4): 588‑594. YANG W
G,HUAI Y J. Flower fine‑grained imageclassification based
on multilayered feature fusion andregion of interest[J]. Journal of
Harbin Engineering University,2021,42(4):588‑594.
[31] XIA X L,XU C,NAN B. Inception‑v3
for flower classi‑fication[C]//2017 2nd International Conference on Image,Vision and Computing(ICIVC). Chengdu,China:IEEE,2017:783‑787.
|