[1]MEI X,LIU X Y,ZHOU Y,et al. Formation and emission of
linalool in tea(Camellia sinensis) leaves infested by tea
green leafhopper(Empoasca(Matsumurasca)onukii Matsuda)[J].Food Chemistry,2017,237:356‑363.
[2] LIAO Y Y,YU Z M,LIU X Y,et al. Effect of major teainsect
attack on formation of quality‑related nonvolatilespecialized metabolites in
tea(Camellia sinensis)leaves[J].Journal of Agricultural and Food
Chemistry,2019,67(24)6716‑6724.
[3] 李明金,朱艳宇,何春梅,等.小贯小绿叶蝉刺吸对青心
大冇美人茶香气和滋味代谢物的影响[J].食品科学,
2024,45(2):248-257.
LI M J,ZHU Y Y,HE C M,et al. Effect of Empoasca
onukii puncturing aroma- and taste-activate metabolites of
qingxindamao beauty tea[J]. Food Science,2024,45(2):
248-257.
[4]XU W K,ZHAO L G,LI J,et al. Detection and
classification of tea buds based on deep learning[J].
Computers and Electronics in Agriculture,2022,192:
106547.
[5]SANDHU G K,KAUR R. Plant disease detection
techniques:A review[C]//2019 International Conference
on
Automation, Computational and Technology
Management(ICACTM). London,UK:IEEE,2019:
34-38.
[6] SUN Y Y,JIANG Z H,ZHANG L P,et al.SLIC_SVM
based leaf diseases saliency map extraction of tea plant[J].Computers and Electronics in Agriculture,2019,
157:102-109.
[7]HOSSAIN S,MOU R M,HASAN M M,et al.Recognition and detection of tea leaf's diseases using
support
vector machine[C]//2018 IEEE 14th
International Colloquium on Signal Processing & Its
Applications(CSPA).Penang,Malaysia:IEEE,2018:
150-154.
[8]HU G S,WEI K,ZHANG Y,et al.Estimation of tea leaf
blight severity in natural scene images[J].Precision Agriculture,2021,22(4):1239-1262.
[9]YANG J C,GUO X L,LI Y,et al. A survey of few-shot
learning
agriculture:Developments,
applications,and challenges[J].Plant Methods,2022,18
(1):28.
[10]REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:
Towards real-time object detection with region proposal
networks[J]. IEEE Transactions on Pattern Analysis and
Machine Intelligence,2017,39(6):1137-1149.
[11] RENDOM J,DIVVALA S,GIRSHICK R,et al. You
only look once:Unified,real-time object detection[C]//
2016 IEEE Conference on Computer Vision and
Pattern Recognition(CVPR).Las Vegas,NV,USA:
IEEE,2016:779-788.
[12]RENDOM J,FARHADI A. YOLO9000:better,faster,
stronger[C]//2017 IEEE Conference on Computer
Vision and Pattern Recognition(CVPR).Honolulu,HI,
USA:IEEE,2017:6517-6525.
[13] RENDOM J,FARHADI A. YOLOv3:An incremental
improvement[EB/OL].(2018-04-08)[2023-10-20].
https://doi.org/10.48550/arXiv.1804.02767.pdf.
[14]BOCHJOVSKIY A,WANG C Y,LIAO H Y M.
YOLOv4:Optimal speed and accuracy of object
detection[EB/OL].(2020-04-23)
[2023-10-20].http://
arxiv. org/abs/2004. 10934. pdf.
[15] 刘拥民,张炜,麻海志,等.基于注意力机制的轻量化
YOLO v5s蓝莓检测算法[J].河南农业科学,2024,53
(3):151-157.
LIU Y M,ZHANG W,MA H Z,et al. Lightweight
YOLO v5s blueberry detection algorithm based on
attention mechanism[J]. Journal of Henan Agricultural
Sciences,2024,53(3):151-157.
[16] LIU W,ANGUELOV D,ERHAN D,et al. SSD:single
shot MultiBox detector[C]//European Conference on
Computer Vision. Cham:Springer,2016:21-37.
[17] SUN X X,MU S M,XU Y Y,et al. Image recognition
of tea leaf diseases based on convolutional neural
network [C]//2018 International Conference on
Security,Pattern Analysis,and Cybernetics(SPAC).
Ji’nan,China:IEEE,2018:304-309.
[18]毛腾跃,朱俊杰,帖军.基于无锚框检测网络的茶叶嫩
芽识别方法研究[J].中南民族大学学报(自然科学
版),2023,42(4):489-496.
MAO T Y,ZHU J J,TIE J. Research based on
recognition method for tea buds based on anchor free
detection network[J]. Journal of South-Central Minzu
University(Natural Science Edition),2023,42(4):
489-496.
[19] LI H,SHI H T,DU A H,et al. Symptom recognition of
disease and insect damage based on Mask R-CNN,
wavelet transform,and F-RNet[J]. Frontiers in Plant
Science,2022,13:922797.
[20] LEE S H,LIN S R,CHEN S F. Identification of tea
foliar diseases and pest damage under practical field
conditions using a convolutional neural network[J].
Plant Pathology,2020,69(9):1731-1739.
[21] HU J,SHEN L,SUN G. Squeeze-and-excitation networks
[C]//2018 IEEE/CVF Conference on Computer Vision [22] 江培营,陶青川,艾梦琴.基于注意力机制和深度学习
的钢板表面缺陷图像分类[J].计算机应用与软件,
2021,38(9):214-219.
JIANG P Y,TAO Q C,AI M Q. Steel surface defect
image classification based on attention mechanism and
deep learning[J].Computer Applications and Software,
2021,38(9):214-219.
[23] LIU Z,LI J G,SHEN Z Q,et al. Learning efficient
convolutional networks through network slimming[C]//
2017 IEEE International Conference on Computer
Vision(ICCV).Venice,Italy:IEEE,2017:2755-2763.
[24] 梁晓婷,庞琦,杨一,等.基于YOLOv4模型剪枝的番茄
缺陷在线检测[J].农业工程学报,2022,38(6):
283-292.
LIANG X T,PANG Q,YANG Y,et al. Online
detection of tomato defects based on YOLOv4 model
pruning[J]. Transactions of the Chinese Society of
Agricultural Engineering,2022,38(6):283-292
|