Journal of Henan Agricultural Sciences ›› 2024, Vol. 53 ›› Issue (5): 157-163.DOI: 10.15933/j.cnki.1004-3268.2024.05.017

• Agricultural Information and Engineering and Agricultural Product Processing • Previous Articles     Next Articles

Research on Insect‑bitten Zijin Tea Detection Method Based on YOLOv5s‑SE and Channel Pruning

DAI Jiabing1,SONG Chunfang1,LING Caijin2,LI Zhenfeng1,SUN Chonggao3   

  1. (1.College of Mechanical Engineering,Jiangnan University/Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology,Wuxi 214122,China;2.Tea Research Institute,Guangdong Academy of Agricultural Sciences/Guangdong Key Laboratory of Tea Plant Resources Innovation & Utilization,Guangzhou 510640,China;3.Shandong Bihai Packaging Materials Co.,Ltd.,Linyi 276600,China)
  • Received:2024-01-22 Published:2024-05-15 Online:2024-06-07

基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法研究

戴佳兵1,宋春芳1,凌彩金2,李臻锋1,孙崇高3   

  1. (1.江南大学机械工程学院/江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122;2.广东省农业科学院茶叶研究所/广东省茶树资源创新利用重点实验室,广东 广州 510640;3.山东碧海包装材料有限公司,山东 临沂 276600)
  • 通讯作者: 李臻锋(1968-),男,加拿大人,教授,博士,主要从事食品无损检测研究。E-mail:1736691239@qq.com
  • 作者简介:戴佳兵(1997-),男,江苏泰兴人,在读硕士研究生,研究方向:计算机视觉及农业信息化。E-mail:1085769527@qq.com
  • 基金资助:
    以农产品为单元的广东省现代农业产业技术体系创新团队建设项目(茶叶)(2023KJ120);河源市科技计划项目(河科2021030);2024紫金县科技计划项目

Abstract: In order to achieve rapid and accurate identification of insect‑bitten Zijin tea leaves in complex nature backgrounds,a detection method for Zijin tea based on YOLOv5s‑SE and channel pruning was proposed. Firstly,SE modules were added to the backbone network of YOLOv5s to enhance the model’s feature extraction capability and reduce interference from complex backgrounds during tea leaf feature extraction.Then,a channel pruning algorithm was used to prune the model and fine‑tuning was conducted,enabling fast and accurate detection of insect‑bitten Zijin tea leaves. Compared to YOLOv5s,the test results showed that the pruned model reduced parameters by 60.1%,improved FPS by 18.6%,reduced GFLOPs by 29.7%,and achieved mAP of 81.3%.

Key words: Tea, Object detection, Channel pruning, Attention mechanism, Deep learning

摘要: 为了实现复杂自然背景下虫咬紫金蝉茶的快速、准确识别,提出了一种基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法。首先在YOLOv5s的主干网络中添加SE注意力机制以增强模型特征提取的能力,降低复杂背景对茶叶特征提取时的干扰;然后采用通道剪枝算法对模型进行剪枝并进行微调,实现虫咬紫金蝉茶叶片的快速、准确检测。结果表明,修剪后的模型相比原YOLOv5s模型,参数量减少60.1%,帧率提升18.6%,运算量减少29.7%,平均精度均值(mAP)为81.3%。

关键词: 茶叶, 紫金蝉茶, 目标检测, 通道剪枝, 注意力机制, 深度学习

CLC Number: