[1]张秦泽,郝广,李洪远. 外源输入氮的有效性及形态对植物生长与生理影响的研究进展[J]. 生态学杂志,2024,43(3):878‑887.
ZHANG Q Z,HAO G,LI H Y. Effects of availability and form of exogenous nitrogen on plant growth and physiology:Progress and prospects[J]. Chinese Journal of Ecology,2024,43(3):878‑887.
[2]WANG P S,XU D H,LAKSHMANAN P,et al.Mitigation strategies for soil acidification based on optimal nitrogen management [J]. Frontiers of Agricultural Science and Engineering,2024:11(2):229‑242.
[3]FAN K K,DELGADO‑BAQUERIZO M,GUO X S,et al.Microbial resistance promotes plant production in a four‑decade nutrient fertilization experiment[J]. Soil Biology and Biochemistry,2020,141:107679.
[4]储成才,王毅,王二涛. 植物氮磷钾养分高效利用研究现状与展望[J].中国科学(生命科学),2021,51(10):1415‑1423.
CHU C C,WANG Y,WANG E T. Improving the utilization efficiency of nitrogen,phosphorus and potassium:Current situation and future perspectives[J].Scientia Sinica(Vitae),2021,51(10):1415‑1423.
[5]李姗,黄允智,刘学英,等. 作物氮肥利用效率遗传改良研究进展[J]. 遗传,2021,43(7):629‑640.
LI S,HUANG Y Z,LIU X Y,et al. Genetic improvement of nitrogen use efficiency in crops[J]. Hereditas,2021,43(7):629‑640.
[6]丁庆倩,王小婷,胡利琴,等. 谷子MYB类转录因子SiMYB42提高转基因拟南芥低氮胁迫耐性[J].遗传,2018,40(4):327‑338.
DING Q Q,WANG X T,HU L Q,et al. MYB‑like transcription factor SiMYB42 from foxtail millet(Setaria italica L.)enhances Arabidopsis tolerance to low‑nitrogen stress[J]. Hereditas,2018,40(4):327‑338.
[7]TANG W J,YE J,YAO X M,et al. Genome‑wide associated study identifies NAC42‑activated nitrate transporter conferring high nitrogen use efficiency in rice [J]. Nature Communications,2019,10(1):5279.
[8]谢政文,王连军,陈锦洋,等. 植物WRKY转录因子及其生物学功能研究进展[J].中国农业科技导报,2016,18(3):46‑54.
XIE Z W,WANG L J,CHEN J Y,et al. Studies on WRKY transcription factors and their biological functions in plants[J]. Journal of Agricultural Science and Technology,2016,18(3):46‑54.
[9]向小华,吴新儒,晁江涛,等. 普通烟草WRKY基因家族的鉴定及表达分析[J].遗传,2016,38(9):840‑862.
XIANG X H,WU X R,CHAO J T,et al. Genome‑wide identification and expression analysis of the WRKY gene family in common tobacco(Nicotiana tabacum L.)[J].Hereditas,2016,38(9):840‑862.
[10]夏雪岩,崔纪菡,黄玫红,等. 谷子苗期氮高效转录组分析与基因挖掘[J].中国农业科技导报,2024,26(10):41‑57.
XIA X Y,CUI J H,HUANG M H,et al. Analysis of high‑efficiency transcriptome of nitrogen in millet seedlings and gene mining[J]. Journal of Agricultural Science and Technology,2024,26(10):41‑57.
[11]李琪,李烨,牛芳芳,等. 拟南芥转录因子基因WRKY72的特性分析及其抗逆功能鉴定[J]. 农业生物技术学报,2019,27(2):191‑203.
LI Q,LI Y,NIU F F,et al. Characterization and stress‑resistance functional identification of transcription factor gene WRKY72 in Arabidopsis thaliana[J]. Journal of Agricultural Biotechnology,2019,27(2):191‑203.
[12]GE F W,TAO P,ZHANG Y,et al. Characterization of AQP gene expressions in Brassica napus during seed germination and in response to abiotic stresses[J].Biologia Plantarum,2014,58(2):274‑282.
[13]丁承强. 氮素穗肥调控水稻每穗颖花数的分子机制[D]. 南京:南京农业大学,2012.
DING C Q. Molecular mechanism of nitrogen fertilizer regulating spikelets per panicle in rice[D]. Nanjing:Nanjing Agricultural University,2012.
[14]贾振宇. 烟草转录因子NtWRKY65在干旱和低氮胁迫中的功能研究[D]. 郑州:河南农业大学,2022.
JIA Z Y. Study on the function of tobacco transcription factor NtWRKY65 in drought and low nitrogen stress [D]. Zhengzhou:Henan Agricultural University,2022.
[15]李晨依,喻奇伟,罗贞宝,等. 烟草高亲和钾转运蛋白基因NtHAK5克隆及表达模式分析[J]. 南方农业学报,2022,53(6):1493‑1501.
LI C Y,YU Q W,LUO Z B,et al. Cloning and expression pattern analysis of high‑affinity potassium transporter gene NtHAK5 in tobacco[J].Journal of Southern Agriculture,2022,53(6):1493‑1501.
[16]国家烟草专卖局. 烟草及烟草制品总氮的测定连续流动法:YC/T 161—2002[S].北京:中国标准出版社,2004.
State Tobacco Monopoly Bureau. Tobacco and tobacco products—Determination of total nitrogen—Continuous flow method:YC/T 161—2002[S]. Beijing:China Standards Press,2004.
[17]LI Y F,YANG H J,CHANG D,et al. Biochemical,physiological and transcriptomic comparison between burley and flue‑cured tobacco seedlings in relation to carbohydrates and nitrate content[J]. Molecules,2017,22(12):2126.
[18]邹琦. 植物生理学实验指导[M]. 北京:中国农业出版社,2000:127‑129.
ZOU Q. Plant physiology experiment guidance[M].Beijing:China Agriculture Press,2000:127‑129.
[19]宋月,崔婷婷,武丽娟,等. 玉米叶片硝酸还原酶活性测定方法的优化[J]. 湖北农业科学,2017,56(15):2817‑2820.
SONG Y,CUI T T,WU L J,et al. Optimization of the determination method for the nitrate reductase in maize leaves[J]. Hubei Agricultural Sciences,2017,56 (15):2817‑2820.
[20]BRESSLER S L,AHMED S I. Detection of glutamine synthetase activity in marine phytoplankton:Optimization of the biosynthetic assay[J]. Marine Ecology Progress Series,1984,14:207‑217.
[21]刘婷婷,樊明寿,李春俭. 不同氮效率玉米自交系对氮素供应的反应[J].华北农学报,2005,20(3):83‑86.
LIU T T,FAN M S,LI C J. Responses of maize inbred lines with contrasting N efficiency to different nitrogen supplies[J]. Acta Agriculturae Boreali‑Sinica,2005,20 (3):83‑86.
[22]LV X M,ZHANG Y X,HU L,et al. Low‑nitrogen stress stimulates lateral root initiation and nitrogen assimilation in wheat:Roles of phytohormone signaling[J]. Journal of Plant Growth Regulation,2021,40(1):436‑450.
[23]GAO K,ZHOU T,HUA Y P,et al.Transcription factor WRKY23 is involved in ammonium‑induced repression of Arabidopsis primary root growth under ammonium toxicity[J]. Plant Physiology and Biochemistry,2020,150:90‑98.
[24]李强,罗延宏,余东海,等. 低氮胁迫对耐低氮玉米品种苗期光合及叶绿素荧光特性的影响[J].植物营养与肥料学报,2015,21(5):1132‑1141.
LI Q,LUO Y H,YU D H,et al. Effects of low nitrogen stress on photosynthetic characteristics and chlorophyll fluorescence parameters of maize cultivars tolerant to low nitrogen stress at the seedling stage[J]. Journal of Plant Nutrition and Fertilizer,2015,21(5):1132‑1141.
[25]CHEN Y,KONG X G,YANG L,et al. Genome‑wide identification of WRKY family genes and the expression profiles in response to nitrogen deficiency in poplar[J]. Genes,2022,13(12):2324.
[26]苏晓帅. 小麦TaWRKY24和TaERF9基因分子特征及抵御低氮胁迫的功能[D]. 保定:河北农业大学,2021.
SU X S.Molecular characteristics of TaWRKY24 and TaERF9 genes in wheat and their resistance to low nitrogen stress[D].Baoding: Hebei Agricultural University,2021.
[27]FAN H M,QUAN S X,YE Q,et al. A molecular framework underlying low‑nitrogen‑induced early leaf senescence in Arabidopsis thaliana[J]. Molecular Plant,2023,16(4):756‑774.
[28]BESSEAU S,LI J,TAPIO PALVA E. WRKY54 and WRKY70 co‑operate as negative regulators of leaf senescence in Arabidopsis thaliana[J]. Journal of Experimental Botany,2012,63(7):2667‑2679.
[29]ZHAO L,ZHANG W,SONG Q,et al. A WRKY transcription factor,TaWRKY40‑D,promotes leaf senescence associated with jasmonic acid and abscisic acid pathways in wheat[J]. Plant Biology,2020,22 (6):1072‑1085.
|