[1]LIANG Z Z,CHEN S C,YANG Y Y,et al. National digital soil map of organic matter in topsoil and its associated uncertainty in 1980's China[J]. Geoderma,2019,335:47⁃56.
[2]汤斯崴,林清美. 澧县耕地土壤有机质状况及其差异性分析[J].湖南农业科学,2018(12):41⁃44.
TANG S W,LIN Q M. Current situation and difference analysis of soil organic matter in farmland of Lixian county[J].Hunan Agricultural Sciences,2018(12):41⁃44.
[3]GHOLOZADEH A,ŽÍŽALA D,SABERIOON M,et al.Soil organic carbon and texture retrieving and mapping using proximal,airborne and Sentinel⁃2 spectral imaging[J].Remote Sensing of Environment,2018,218:89⁃103.
[4]ŽÍŽALA D,MINAŘÍK R,ZÁDOROVÁ T. Soil organic carbon mapping using multispectral remote sensing data:Prediction ability of data with different spatial and spectral resolutions[J].Remote Sensing,2019,11(24):2947.
[5]王燕.半干旱地区土壤有机碳遥感估算研究[D].北京:中国林业科学研究院,2018.
WANG Y.Estimation of soil organic carbon in semi⁃arid area by remote sensing[D].Beijing:Chinese Academy of Forestry,2018.
[6]赵思萌. 基于Landsat 8的土壤有机碳遥感反演模型研究[D].太古:山西农业大学,2020.
ZHAO S M.Research on remote sensing inversion model of soil organic carbon based on Landsat 8[D].Taigu:Shanxi Agricultural University,2020.
[7]BEHRENS T,SCHMIDT K,RAMIREZ⁃LOPEZ L,et al.Hyper⁃scale digital soil mapping and soil formation analysis[J]. Geoderma,2014,213:578⁃588.
[8]SULLIVAN D G,SHAW J N,RICKMAN D. IKONOS imagery to estimate surface soil property variability in two alabama physiographies[J]. Soil Science Society of America Journal,2005,69(6):1789⁃1798.
[9]刘焕军,张柏,赵军,等.黑土有机质含量高光谱模型研究[J].土壤学报,2007,44(1):27⁃32.
LIU H J,ZHANG B,ZHAO J,et al. Spectral models for prediction of organic matter in black soil[J].Acta Pedologica Sinica,2007,44(1):27⁃32.
[10]SUMMERS D,LEWIS M,OSTENDORF B,et al.Visible near⁃infared reflectance spectroscopy as a predictive indicator of soil properties[J]. Ecological Indicators,2011,11(1):123⁃131.
[11]孟鑫鑫,于雷,周勇,等.基于可见近红外和中红外近地面光谱数据融合的土壤有机碳含量反演[J].土壤通报,2022,53(2):301⁃307.
MENG X X,YU L,ZHOU Y,et al. Predicting organic carbon using data fusion of visible near⁃infrared and middle infrared spectra by proximal soil sensing[J].Chinese Journal of Soil Science,2022,53(2):301⁃307.
[12]DEISS L,MARGENOT A J,CULMAN S W,et al.Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy[J]. Geoderma,2020,365:114227.
[13]叶勤,姜雪芹,李西灿,等.基于高光谱数据的土壤有机质含量反演模型比较[J].农业机械学报,2017,48(3):164⁃172.
YE Q,JIANG X Q,LI X C,et al. Comparison on inversion model of soil organic matter content based on hyperspectral data[J].Transactions of the Chinese Society for Agricultural Machinery,2017,48(3):164⁃172.
[14]王来刚,郑国清,郭燕,等.融合多源时空数据的冬小麦产量预测模型研究[J].农业机械学报,2022,53(1):198⁃204,458.
WANG L G,ZHENG G Q,GUO Y,et al. Prediction of winter wheat yield based on fusing multi⁃source spatio⁃temporal data[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(1):198⁃204,458.
[15]林志坚,姚俊萌,苏校平,等.基于MODIS指数和随机森林的江西省早稻种植信息提取[J].农业工程学报,2022,38(11):197⁃205.
LIN Z J,YAO J M,SU X P,et al.Extracting planting information of early rice using MODIS index and random forest in Jiangxi Province, China[J].Transactions of the Chinese Society of Agricultural Engineering,2022,38(11):197⁃205.
[16]刘焕军,张美薇,杨昊轩,等.多光谱遥感结合随机森林算法反演耕作土壤有机质含量[J].农业工程学报,2020,36(10):134⁃140.
LIU H J,ZHANG M W,YANG H X,et al. Invertion of cultivated soil organic matter content combining multi⁃spectral remote sensing and random forest algorithm[J].Transactions of the Chinese Society of Agricultural Engineering,2020,36(10):134⁃140.
[17]王延仓,张兰,王欢,等.连续小波变换定量反演土壤有机质含量[J].光谱学与光谱分析,2018,38(11):3521⁃3527.
WANG Y C,ZHANG L,WANG H,et al. Quantitative inversion of soil organic matter content based on continuous wavelet transform[J].Spectroscopy and Spectral Analysis,2018,38(11):3521⁃3527.
[18]CHEN T Q,GUESTRIN C. XGBoost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,NY,USA:Association for Computing Machinery,2016:785⁃794.
[19]YE M,ZHU L,LI X J,et al.Estimation of the soil arsenic concentration using a geographically weighted XGBoost model based on knowledge discovery and data[J].Pubmed,2023,858(Pt 1):159798.
[20]ZHOU Z H,FENG J. Deep forest[J]. National Science Review,2019,6(1):74⁃86.
[21]张梓浩,郭飞,吴坤泽,等. 深度森林DF21模型在土壤镉含量高光谱反演中的性能评价[J].光谱学与光谱分析,2023,43(8):2638⁃2643.
ZHANG Z H,GUO F,WU K Z,et al.Performance evaluation of the deep forest 2021(DF21)model in
retrieving soil cadmium concentration using hyperspectral data[J]. Spectroscopy and Spectral Analysis,2023,43(8):2638⁃2643.
[22]谢军飞,张海清,李代伟,等.基于Lightgbm和XGBoost 的优化深度森林算法[J].南京大学学报(自然科学),
2023,59(5):833⁃840.
XIE J F,ZHANG H Q,LI D W,et al. Optimized deep forest algorithm based on Lightgbm and XGBoost[J].Journal of Nanjing University(Natural Science),2023,59(5):833⁃840.
[23]XIE B Q,DING J L,GE X Y,et al.Estimation of soil organic carbon content in the Ebinur Lake Wetland,Xinjiang,China,based on multisource remote sensing data and ensemble learning algorithms[J].Sensors(Basel),2022,22(7):2685.
[24]王永平,周子柯,滕昊蔚,等.滇南小流域3种土地利用方式下土壤侵蚀及养分流失特征[J].水土保持研究,2021,28(1):11⁃18.
WANG Y P,ZHOU Z K,TENG H W,et al.Characteristics of soil erosion and nutrient losses in three land use patterns in the small watershed of southern Dianchi[J].Research of Soil and Water Conservation,2021,28(1):11⁃18.
|