河南农业科学 ›› 2025, Vol. 54 ›› Issue (2): 1-9.DOI: 10.15933/j.cnki.1004-3268.2025.02.001
彭宇龙1,孙小芳2,黄云3,赵梓俨4
收稿日期:
2024-05-13
出版日期:
2025-02-15
发布日期:
2025-04-07
作者简介:
彭宇龙(1988-),男,四川成都人,副教授,博士,主要从事植物抗病性利用以及纳米抑菌材料在植物病害防控中的应用研究。E-mail:yulopeng@163.com基金资助:
PENG Yulong1,SUN Xiaofang2,HUANG Yun3,ZHAO Ziyan4
Received:
2024-05-13
Published:
2025-02-15
Online:
2025-04-07
摘要: 随着纳米技术的发展,纳米ZnO由于具有良好的微生物抑制效果在植物保护领域备受关注。综述了纳米ZnO对植物病原细菌、真菌、卵菌、病毒、线虫等各类病原物的直接抑制作用,对植物的抗病性诱导和对植物生长的促进作用,以及其他潜在的增益效果等,讨论了纳米ZnO复合材料、掺杂型纳米ZnO及纳米ZnO绿色合成在植物病害防控中的应用。未来纳米ZnO在植物病害防控中的应用研究可聚焦于拓展其对多种病原物效果的评估及其作用机制解析、优化纳米ZnO材料的性能以提升其应用效果等方面。
中图分类号:
彭宇龙, 孙小芳, 黄云, 赵梓俨. 纳米ZnO在植物病害防控中的应用研究进展[J]. 河南农业科学, 2025, 54(2): 1-9.
PENG Yulong1, SUN Xiaofang2, HUANG Yun3, ZHAO Ziyan. Research Progress on Nano⁃ZnO Applications in Plant Disease Control[J]. Journal of Henan Agricultural Sciences, 2025, 54(2): 1-9.
[1]RAJWADE J M,CHIKTE R G,PAKNIKAR K M.Nanomaterials:New weapons in a crusade against phytopathogens[J]. Applied Microbiology & Biotechnology,2020,104(4):1437⁃1461. [2]PRASAD R,BHATTACHARYYA A,NGUYEN Q D.Nanotechnology in sustainable agriculture:Recent developments,challenges,and perspectives[J].Frontiers in Microbiology,2017,8:1014. [3]SIDDIQI K S,RAHMAN A U,TAJUDDIN,et al.Properties of zinc oxide nanoparticles and their activity against microbes[J]. Nanoscale Research Letters,2018,13(1):141. [4]THOUNAOJAM T C,MEETEI T T,DEVI Y B,et al.Zinc oxide nanoparticles(ZnO⁃NPs) :A promising nanoparticle in renovating plant science[J]. Acta Physiologiae Plantarum,2021,43(10):136. [5]IZZI M,SPORTELLI M C,TORSI L,et al. Synthesis and antimicrobial applications of ZnO nanostructures:A review[J].ACS Applied Nano Materials,2023,6(13):10881⁃10902. [6]FAN G J,XIAO Q L,LI Q,et al.Antimicrobial mechanisms of ZnO nanoparticles to phytopathogen Pseudomonas syringae:Damage of cell envelope,suppression of metabolism,biofilm and motility,and stimulation of stomatal immunity on host plant[J].Pesticide Biochemistry & Physiology, 2023, 194:105455. [7]ŞAHIN B,SOYLU S,KARA M,et al.Superior antibacterial activity against seed⁃borne plant bacterial disease agents and enhanced physical properties of novel green synthesized nanostructured ZnO using Thymbra spicata plant extract[J].Ceramics International,2021,47(1):341⁃350. [8]PARVEEN A,SIDDIQUI Z A.Zinc oxide nanoparticles affect growth,photosynthetic pigments,proline content and bacterial and fungal diseases of tomato[J].Archives of Phytopathology & Plant Protection,2021,54(17/18):1519⁃1538. [9]SIDDIQUI Z A,KHAN M R,ABD_ALLAH E F,et al.Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases,and growth and physiological changes of beetroot [J].International Journal of Vegetable Science,2019,25(5):409⁃430. [10]REHMAN F U,PAKER N P,KHAN M,et al.Bio⁃fabrication of zinc oxide nanoparticles from Picea smithiana and their potential antimicrobial activities against Xanthomonas campestris pv. vesicatoria and Ralstonia solanacearum causing bacterial leaf spot and bacterial wilt in tomato[J].World Journal of Microbiology & Biotechnology,2023,39(7):176. [11]PROMILA,GREWAL S,KUMARI S,et al.Assessment of antibacterial activity of biosynthesised ZnO nanoparticles against Xanthomonas axonopodis pv.malvacearum causing bacterial blight in cotton[J].Journal of Nanoscience & Nanotechnology,2021,21 (6):3531⁃3538. [12]SHOBHA B,LAKSHMEESHA T R,ANSARI M A,et al.Mycosynthesis of ZnO nanoparticles using Trichoderma spp. isolated from rhizosphere soils and its synergistic antibacterial effect against Xanthomonas oryzae pv.oryzae[J].Journal of Fungi,2020,6(3):181. [13]GRAHAM J H,JOHNSON E G,MYERS M E,et al.Potential of nano⁃formulated zinc oxide for control of Citrus canker on grapefruit trees[J].Plant Disease,2016,100(12):2442⁃2447. [14]KHAN R A A,TANG Y Y,NAZ I,et al.Management of Ralstonia solanacearum in tomato using ZnO nanoparticles synthesized through Matricaria chamomilla[J].Plant Disease,2021,105(10):3224⁃3230. [15]NARANJO E,MERFA M V,SANTRA S,et al.Zinkicide is a ZnO⁃based nanoformulation with bactericidal activity against Liberibacter crescens in batch cultures and in microfluidic chambers simulating plant vascular systems[J].Applied & Environmental Microbiology,2020,86(16):e00788⁃20. [16]OGUNYEMI S O,ABDALLAH Y,ZHANG M C,et al.Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae[J].Artificial Cells,Nanomedicine,& Biotechnology,2019,47(1):341⁃352. [17]LIANG W L,CHENG J L,ZHANG J D,et al.pH⁃responsive on⁃demand alkaloids release from core⁃shell ZnO@ZIF⁃8 nanosphere for synergistic control of bacterial wilt disease[J].ACS Nano,2022,16(2):2762⁃2773. [18]OGUNYEMI S O,ZHANG M C,ABDALLAH Y,et al.The bio⁃synthesis of three metal oxide nanoparticles(ZnO,MnO2,and MgO)and their antibacterial activity against the bacterial leaf blight pathogen[J]. Frontiers in Microbiology,2020,11:588326. [19]SUN Q,LI J M,LE T. Zinc oxide nanoparticle as a novel class of antifungal agents:Current advances and future perspectives[J].Journal of Agricultural & Food Chemistry,2018,66(43):11209⁃11220.
[20]孙琦,李建美,乐涛,等.纳米氧化锌的抗真菌活性研究进展[J].重庆师范大学学报(自然科学版),2019,36(2):122⁃129.
[21]况慧娟,杨林,许恒毅,等. 纳米氧化锌抗菌性能及机制的研究进展[J].中国药理学与毒理学杂志,2015,29(1):153⁃157. [22]FARHANA,MUNIS M F H,ALAMER K H,et al. ZnO nanoparticle⁃mediated seed priming induces biochemical and antioxidant changes in chickpea to alleviate Fusarium wilt[J].Journal of Fungi,2022,8 (7):753. [23]PENA G A,CARDENAS M A,MONGE M P,et al.Reduction of Fusarium proliferatum growth and fumonisin accumulation by ZnO nanoparticles both on a maize based medium and irradiated maize grains[J].International Journal of Food Microbiology,2022,363:109510. [24]SHAMS A H M,HELALY A A,ALGEBLAWI A M,et al.Efficacy of seed⁃biopriming with Trichoderma spp.and foliar spraying of ZnO⁃nanoparticles induce cherry tomato growth and resistance to Fusarium wilt disease[J].Plants,2023,12(17):3117. [25]DIMKPA C O,MCLEAN J E,BRITT D W,et al.Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum[J].Biometals,2013,26(6):913⁃924.
[26]王虎军,路军,薛华丽,等.纳米氧化锌对甜瓜主要致病菌抑菌活性研究[J].食品工业科技,2016,37(4):356⁃359,364. [27]LAKSHMEESHA T R,SATEESH M K,PRASAD B D,et al.Reactivity of crystalline ZnO superstructures against fungi and bacterial pathogens:Synthesized using Nerium oleander leaf extract[J].Crystal Growth & Design,2014,14(8):4068⁃4079. [28]ELSHAFIE H S,OSMAN A,EL⁃SABER M M,et al.Antifungal activity of green and chemically synthesized ZnO nanoparticles against Alternaria citri,the causal agent Citrus black rot[J].The Plant Pathology Journal,2023,39(3):265⁃274. [29]AKHTARI A,DAVARI M,HABIBI⁃YANGJEH A,et al.Antifungal activities of pure and ZnO⁃encapsulated essential oil of Zataria multiflora on Alternaria solani as the pathogenic agent of tomato early blight disease[J].Frontiers in Plant Science,2022,13:932475. [30]DHIMAN S,VARMA A,PRASAD R,et al. Mechanistic insight of the antifungal potential of green synthesized zinc oxide nanoparticles against Alternaria brassicae[J].Journal of Nanomaterials,2022,2022(1) :7138843. [31]LI J L,SANG H,GUO H Y,et al.Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa[J].Nanotechnology,2017,28 (15):155101. [32]SHARMA I,SHARMA M V,HAQUE M A,et al.Antifungal action and targeted mechanism of Bio fabricated zinc oxide(ZnO) nanoparticles against Ascochytafabae[J].Heliyon,2023,9(9):e19179. [33]PARIONA N,PARAGUAY⁃DELGADO F,BASURTO ⁃CERECEDA S,et al.Shape⁃dependent antifungal activity of ZnO particles against phytopathogenic fungi[J].Applied Nanoscience,2020,10(2):435⁃443. [34]HE L L,LIU Y,MUSTAPHA A,et al. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum[J].Microbiological Research,2011,166(3):207⁃215. [35]ARCINIEGAS⁃GRIJALBA P A,PATIÑO⁃PORTELA M C, MOSQUERA⁃SÁNCHEZ L P, et al.ZnO nanoparticles(ZnO⁃NPs)and their antifungal activity against coffee fungus Erythricium salmonicolor[J].Applied Nanoscience,2017,7(5):225⁃241. [36]ALI M,WANG X K,HAROON U,et al.Antifungal activity of Zinc nitrate derived nano ZnO fungicide synthesized from Trachyspermum ammi to control fruit rot disease of grapefruit[J].Ecotoxicology & Environmental Safety,2022,233:113311. [37]P S V,R K,V T K. Photocatalytic and antimicrobial activities of pure and Mn doped ZnO nanoparticles synthesised by Annona Muricata leaf extract[J].International Journal of Environmental Analytical Chemistry,2024,104(17):5083⁃5098. [38]FARHANA,ALI M,AKBAR M,et al.Concurrent application of bacterial⁃mediated and mycosynthesized ZnO nanofungicides to maintain high ascorbic acid and delay postharvest decay of apricot[J].Microbial Pathogenesis,2023,182:106207. [39]GHAMARI R,AHMADIKHAH A,TOHIDFAR M,et al. RNA⁃seq analysis of Magnaporthe grisea transcriptome reveals the high potential of ZnO nanoparticles as a nanofungicide[J].Frontiers in Plant Science,2022,13:896283.
[40]王双恒.纳米氧化锌对玉米幼苗生长影响及抑菌活性研究[D].凤阳:安徽科技学院,2019. [41]ZAKI S A,OUF S A,ALBARAKATY F M,et al. Trichoderma harzianum⁃mediated ZnO nanoparticles:A green tool for controlling soil⁃borne pathogens in cotton [J]. Journal of Fungi,2021,7(11):952. [42]HAMZA A M,ESSA T A,DERBALAH A S,et al.Performance of some fungicide alternatives for controlling powdery mildew on cucumber under greenhouse conditions [J]. Egyptian Journal of Biological Pest Control,2015,25(3):647⁃654. [43]GABER S E,HASHEM A H,EL⁃SAYYAD G S,et al.Antifungal activity of myco⁃synthesized bimetallic ZnO⁃CuO nanoparticles against fungal plant pathogen Fusarium oxysporum[J].Biomass Conversion & Biorefinery,2024,14(20):25395⁃25409. [44]MAZHAR M W,ISHTIAQ M,MAQBOOL M,et al.Foliar application of zinc oxide nanoparticles improves rice yield under biotic stress posed by Magnaporthe oryzae[J].Archives of Phytopathology & Plant Protection,2023,56(14):1093⁃1111. [45]ISSAM N,NACEUR D,NECHI G,et al.Green synthesised ZnO nanoparticles mediated by Olea europaea leaf extract and their antifungal activity against Botrytis cinerea infecting faba bean plants[J].Archives of Phytopathology & Plant Protection,2021,54(15/16):1083⁃1105.
[46]XUE J Z,LUO Z H,LI P,et al. A residue⁃free green synergistic antifungal nanotechnology for pesticide [47]SHARMA S,THAKUR S,KUMARI P,et al.Bio⁃synthesized ZnO NPs using cow urine in vitro &in vivo efficacy against late blight pathogen[J].Inorganic & Nano⁃Metal Chemistry,2025,55(3):362⁃372.
[48]陈娟妮,鲁梅,丁伟. 纳米氧化锌对烟草疫霉菌的抑菌作用研究[J].植物医生,2021,34(2):34⁃40. [49]CAI L,LIU C Y,FAN G J,et al. Preventing viral disease by ZnONPs through directly deactivating TMV and activating plant immunity in Nicotiana benthamiana[J].Environmental Science:Nano,2019,6(12):653⁃3669. [50]RIVERO⁃MONTEJO S D J,RIVERA⁃BUSTAMANTE R F,SAAVEDRA⁃TREJO D L,et al. Inhibition of pepper huasteco yellow veins virus by foliar application of ZnO nanoparticles in Capsicum annuumL[J].Plant Physiology & Biochemistry,2023,203:108074. [51]SIDDIQUI Z A,PARVEEN A,AHMAD L,et al.Effects of graphene oxide and zinc oxide nanoparticles on growth,chlorophyll,carotenoids,proline contents and diseases of carrot[J].Scientia Horticulturae,2019,249:374⁃382.
[52]LV W X,GENG H H,ZHOU B H,et al. The behavior,transport,and positive regulation mechanism of ZnO [53]WANG J,ZOU A H,XIANG S Y,et al.Transcriptome analysis reveals the mechanism of zinc ion⁃mediated plant resistance to TMV in Nicotiana benthamiana[J].Pesticide Biochemistry & Physiology,2022,184:105100.
[54]LIU L R,NIAN H,LIAN T X. Plants and rhizospheric environment:Affected by zinc oxide nanoparticles(ZnO
[55]胡灵璇,王晓红,张胜前,等. 叶面施加纳米氧化锌对木槿生长及生理特性的影响[J].湖南生态科学学报,2023,10(3):51⁃58. [56]赵威,陈先良,王长进,等. 纳米氧化锌对玉米幼苗生长及酶活性的影响[J].安徽农学通报,2021,27(9):22⁃26. ZHAO W,CHEN X L,WANG C J,et al. Effects of nano⁃zinc oxide on growth and enzyme activity of maize seedlings [J]. Anhui Agricultural Science Bulletin,2021,27(9):22⁃26. [57]DONIA D T,CARBONE M. Seed priming with zinc oxide nanoparticles to enhance crop tolerance to environmental stresses[J]. International Journal of Molecular Sciences,2023,24(24):17612.
[58]孙露莹,宋凤斌,李向楠,等. 纳米氧化锌对玉米种子萌发及根系碳代谢的影响[J].土壤与作物,2020,9(1):40⁃49.
[59]梁金燕,廖荣,田华,等. 纳米氧化锌浸种对铅胁迫下水稻种子萌发生理的影响[J].种子,2022,41(9):10⁃16,27.
[60] 殷小冬,诸俊,顾大路,等. 纳米氧化锌对水稻种子发芽和幼苗生长的影响[J]. 江苏农业科学,2021,49(19):101⁃106.
[61]林茂宏,沈玫玫,吴佳妮,等. 纳米氧化锌对两种蔬菜种子发芽及幼苗生长的影响[J].农业资源与环境学报,2021,38(1):72⁃78. [62]EL⁃SAMAD L M,BAKR N R,ABOUZID M,et al.Nanoparticles⁃mediated entomotoxicology:Lessons from biologica[J].Ecotoxicology,2024,33(3):305⁃324. [63]SENBILL H,HASSAN S M,ELDESOUKY S E.Acaricidal and biological activities of titanium dioxide and zinc oxide nanoparticles on the two⁃spotted spider mite,Tetranychus urticae Koch(Acari:Tetranychidae)and their side effects on the predatory mite,Neoseiulus californicus(Acari: Phytoseiidae)[J].Journal of Asia⁃Pacific Entomology,2023,26(1):102027. [64]GUTIÉRREZ⁃RAMÍREZ J A,BETANCOURT⁃GALINDO R,AGUIRRE⁃URIBE L A,et al. Insecticidal effect of zinc oxide and titanium dioxide nanoparticles against Bactericera cockerelli Sulc.(Hemiptera:Triozidae)on tomato Solanum lycopersicum[J].Agronomy,2021,11 (8):1460. [65]KHALEEL A I,MOHMED A S,AL⁃TAEY D K,et al.Green synthesis of ZnO nanoparticles using Myrtus communis L. extract and their insecticidal activity against Myzus persicae(Sulzer)[J].Biopesticides International,2023,19(2):143⁃148. [66]JIANG H B,LV L Q,AHMED T,et al.Effect of the nanoparticle exposures on the tomato bacterial wilt disease control by modulating the rhizosphere bacterial community[J].International Journal of Molecular Sciences,2022,23(1):414. [67]KHAN S H, PATHAK B. Zinc oxide based photocatalytic degradation of persistent pesticides:A comprehensive review[J].Environmental Nanotechnology,Monitoring & Management,2020,13:100290. [68]CAI L,HUANG X L,FENG H,et al. Antimicrobial mechanisms of g⁃C3N4@ZnO against oomycetes Phytophthora capsici:From its metabolism,membrane structures and growth[J].Pest Management Science,2024,80(4):2096⁃2108.
[69]CAI L,HUANG X L,FENG H,et al.Composite g⁃C3N4@ZnO NP electrostatic self⁃assembly:Enhanced ROS as a key factor for high⁃efficiency control of tobacco wildfire disease[J].Pest Management Science,2023,79(12):5140⁃5151.
[72]CHANG T H,CHEN Y C,LAI Y F,et al.Integrated application of grafted ZnO and fungicide to control the fungicide⁃resistant Colletotrichum spp.[J].Journal of the Taiwan Institute of Chemical Engineers,2024,155:105321. |
[1] | 曹鹏飞, 刘青娥. 杨梅枯萎病拮抗内生菌的分离及其抑菌机制研究[J]. 河南农业科学, 2021, 50(4): 96-105. |
[2] | 崔筱, 刘芹, 丁亚通, 康源春, 胡素娟, 宋凯博, 张玉亭, 孔维丽. 平菇培养料发酵后对霉菌抑制机制研究[J]. 河南农业科学, 2021, 50(3): 109-116. |
[3] | 徐 斌,陈银凤,张 云,魏利辉,张 青,陈夕军. 放线菌K13最适培养条件及其对草莓灰霉病菌的抑制作用[J]. 河南农业科学, 2015, 44(12): 70-74. |
[4] | 陈利军,智亚楠,王国君,尹健,熊建伟,史洪中. 土荆芥果实挥发油的抑菌活性及其组分分析[J]. 河南农业科学, 2015, 44(1): 70-76. |
[5] | 马强;白献晓;刘付玖;任巧玲. 畜禽饲用抗生素替代品概述[J]. 河南农业科学, 2006, 35(10): 107-109,111. |
[6] | 陈利军;史洪中;陈月华. 油菜内生球毛壳菌抑菌作用初步测定[J]. 河南农业科学, 2005, 34(7): 54-56. |
[7] | 冯佩之. 对我国种植业将产生重大影响的10项农业新技术[J]. 河南农业科学, 2001, 30(1): 6-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||