[1]WANG J,WU H H,WANG Y C,et al.Small particles,big effects:How nanoparticles can enhance plant growth in favorable and harsh conditions[J].Journal of Integrative Plant Biology,2024,66(7):1274‑1294.
[2]王敬营,王佳旭,陈丽娜,等. 埃洛石纳米管对铜胁迫下小麦幼苗生长的影响[J]. 河南农业科学,2024,53(7):28‑34.
WANG J Y,WANG J X,CHEN L N,et al. Effect of halloysite nanotubes on growth of wheat under copper stress[J]. Journal of Henan Agricultural Sciences,2024,53(7):28‑34.
[3]韩铭,张全国,周楠,等.光催化纳米颗粒对光合细菌HAU-M1产氢的影响[J].河南农业大学学报,2023,57(2):316‑323.
HAN M,ZHANG Q G,ZHOU N,et al. Effect of photocatalytic nanoparticles on hydrogen production by photosynthetic bacteria HAU‑M1[J]. Journal of Henan Agricultural University,2023,57(2):316‑323.
[4]和春昊,金钺,张晨昕,等. 携肠球菌Ace抗原的铁蛋白纳米粒制备与免疫效果检测[J].河南农业大学学报,2020,54(4):638‑642.
HE C H,JIN Y,ZHANG C X,et al. Preparation and immunoassay of ferritin nanoparticles carrying antigenic epitopes of Ace from Enterococcus feacalis[J].Journal of Henan Agricultural University,2020,54(4):638‑642.
[5]WANG P,LOMBI E,ZHAO F J,et al. Nanotechnology:A new opportunity in plant sciences[J]. Trends in Plant
Science,2016,21(8):699‑712.
[6]安义伟,梁慧慧,仲崇佳,等. 纳米基因载体在植物遗传转化中的应用进展[J].河南农业科学,2022,51(12):1‑9.
AN Y W,LIANG H H,ZHONG C J,et al.Progress on application of nano‑gene vector in plant genetic transformation [J]. Journal of Henan Agricultural Sciences,2022,51(12):1‑9.
[7]DENG C H,TANG Q,YANG Z M,et al.Effects of iron oxide nanoparticles on phenotype and metabolite changes in hemp clones(Cannabis sativa L.)[J].Frontiers of Environmental Science & Engineering,2022,16(10):134.
[8]孙露莹,宋凤斌,李向楠,等. 纳米氧化锌对玉米种子萌发及根系碳代谢的影响[J]. 土壤与作物,2020,9(1):40‑49.
SUN L Y,SONG F B,LI X N,et al. Effects of ZnO nanoparticles on seed germination and root carbon metabolism in maize(Zea mays L. )[J]. Soils and Crops,2020,9(1):40‑49.
[9]彭晴晴,杨静雅,钟民正,等. ZnO NPs对四种豆科种子发芽及幼苗生长的影响[J]. 农业环境科学学报,2021,40(6):1174‑1182.
PENG Q Q,YANG J Y,ZHONG M Z,et al. Effects of ZnO nanoparticles on the germination and seedling growth of four legume seeds[J].Journal of Agro‑Environment Science,2021,40(6):1174‑1182.
[10]胡灵璇,王晓红,张胜前,等.叶面施加纳米氧化锌对木槿生长及生理特性的影响[J].湖南生态科学学报,2023,10(3):51‑58.
HU L X,WANG X H,ZHANG S Q,et al.Effects of foliar application of zinc oxide nanoparticles in Hibiscus syriacus[J].Journal of Hunan Ecological Science,2023,10(3):51‑58.
[11]牟鲯璃,陈开俊,李雨航,等. 氧化锌纳米颗粒对生菜养分吸收及光合作用的影响[J].浙江大学学报(农业与生命科学版),2023,49(2):229‑240.
MOU Q L,CHEN K J,LI Y H,et al. Effects of zinc oxide nanoparticles on nutrient uptake and photosynthesis of lettuce[J].Journal of Zhejiang University(Agriculture and Life Sciences),2023,49 (2):229‑240.
[12]GUO J H,LI S X,BRESTIC M,et al. Modulations in protein phosphorylation explain the physiological responses of barley(Hordeum vulgare)to nanoplastics and ZnO nanoparticles[J]. Journal of Hazardous Materials,2023,443:130196.
[13]曹冲,黄娟,王宁,等. 纳米氧化锌对湿地植物种子萌发的影响[J].东南大学学报(自然科学版),2017,47(2):416‑420.
CAO C,HUANG J,WANG N,et al.Impact of zinc oxide nanoparticles on seed germination of wetland plant[J].Journal of Southeast University(Natural Science Edition),2017,47(2):416‑420.
[14] VERMA S K,DAS A K,PATEL M K,et al. Engineered nanomaterials for plant growth and development:A perspective analysis [J]. Science of the Total Environment,2018,630:1413‑1435.
[15]KHAN A R,AZHAR W,FAN X M,et al. Efficacy of zinc‑based nanoparticles in alleviating the abiotic stress in plants: Current knowledge and future perspectives[J]. Environmental Science and Pollution Research,2023,30(51):110047‑110068.
[16]QIU J H,CHEN Y,LIU Z Q,et al. The application of zinc oxide nanoparticles:An effective strategy to protect rice from rice blast and abiotic stresses[J].Environmental Pollution,2023,331:121925.
[17]PUJOL B,ARCHAMBEAU J,BONTEMPS A,et al.Mountain landscape connectivity and subspecies appurtenance shape genetic differentiation in natural plant populations of the snapdragon(Antirrhinum majus L.)[J].Botany Letters,2017,164(2):111‑119.
[18]陈宇华,陈剑锋,钟声远,等. 20份金鱼草种质资源花色性状鉴定与分析[J].福建农业科技,2022,53(7):1‑7.
CHEN Y H,CHEN J F,ZHONG S Y,et al.Identification and analysis of flower color traits of 20 germplasm resources of Antirrhinum majus[J].Fujian Agricultural Science and Technology,2022,53(7):1‑7.
[19]宋倩娜,刘琛,高振蕊,等. 热激启动子18. 2在金鱼草中启动下游基因表达最适温度条件的筛选[J]. 生态学杂志,2014,33(9):2436‑2441.
SONG Q N,LIU C,GAO Z R,et al. Optimal temperature for hsp18. 2 promoter in gene expression of anthocyanin biosynthesis of Antirrhinum majus[J].Chinese Journal of Ecology,2014,33(9):2436‑2441.
[20]吴华. AsA-GSH循环参与海滨木槿盐应答机制的研究[D]. 济南:山东师范大学,2015.WU H. Study on the mechanism of AsA‑GSH cycle participating in salt response of Hibiscus littoral[D].Ji’nan:Shandong Normal University,2015.
[21]王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京:高等教育出版社,2006.WANG X K. Principles and techniques of plant physiological and biochemical experiments[M]. 2nd edition. Beijing:Higher Education Press,2006.
[22]王会涛,袁刘正,柳家友,等. 花期高温对玉米的影响研究进展[J].河南农业科学,2022,51(9):1‑9.
WANG H T,YUAN L Z,LIU J Y,et al. Research progress on effect of high temperature on maize at
flowering stage[J]. Journal of Henan Agricultural Sciences,2022,51(9):1‑9.
[23]田佳,李佳,孟清波,等. 不同苹果品种叶片耐热阈值及高温下生理生化响应[J]. 河南农业科学,2021,50 (1):121‑128.
TIAN J,LI J,MENG Q B,et al. Heat tolerance threshold and physiological and biochemical responses of leaves of different apple varieties[J]. Journal of Henan Agricultural Sciences,2021,50(1):121‑128.
[24] 袁慧敏,王革伏,樊佳茹,等. 高温对番茄幼苗生长和花芽分化的影响[J]. 西北植物学报,2019,39(10):1768‑1775.
YUAN H M,WANG G F,FAN J R,et al. Effect of high temperature stress on growth and floral bud differentiation of tomato seedlings[J]. Acta Botanica Boreali‑Occidentalia Sinica,2019,39(10):1768‑1775.
[25]KAREEM H A,HASSAN M U,ZAIN M,et al.Nanosized zinc oxide(n‑ZnO)particles pretreatment to alfalfa seedlings alleviate heat‑induced Morpho‑physiological and ultrastructural damages[J].Environmental Pollution,2022,303:119069.
[26]聂青. SiO2提高匍匐型剪股颖和水稻耐高温胁迫的机理研究[D]. 北京:中国农业大学,2002.
NIE Q. Study on the mechanism of SiO2 enhancing creeping sheath and rice’s tolerance to high temperature stress[D]. Beijing:China Agricultural University,2002.
[27]江建成,廖菊阳,曹受金,等. 高温胁迫对三种杜鹃生长及生理的影响[J]. 北方园艺,2023(18):54‑62.
JIANG J C,LIAO J Y,CAO S J,et al. Effects of high temperature stress on the growth and physiology of
three Rhododendron species[J]. Northern Horticulture,2023(18):54‑62.
[28]刘晨,许业洲,杜超群,等. SiO2纳米颗粒对杉木幼苗生长发育的影响[J]. 中南林业科技大学学报,2020,40(4):34‑43.
LIU C,XU Y Z,DU C Q,et al. Effects of SiO2 nanoparticles on growth and development of Cunninghamia lanceolata(Lamb.) Hook[J]. Journal of Central South University of Forestry & Technology,2020,40(4):34‑43.
[29]刘敏,房玉林. 高温胁迫对葡萄幼树生理指标和超显微结构的影响[J]. 中国农业科学,2020,53(7):1444‑1458.
LIU M,FANG Y L. Effects of heat stress on physiological indexes and ultrastructure of grapevines[J]. Scientia Agricultura Sinica,2020,53(7) :1444‑1458.
[30]刘辉,骆慧枫,张琛,等. 甜樱桃对高温胁迫的生理响应[J].生态学报,2023,43(2):702‑708.
LIU H,LUO H F,ZHANG C,et al. Physiological responses to high temperature stress in Prunus avium L.[J]. Acta Ecologica Sinica,2023,43(2):702‑708.
[31]李萍萍,曾明,李文海,等. 胡杨异形叶抗氧化能力的比较[J]. 北京林业大学学报,2019,41(8):76‑83.
LI P P,ZENG M,LI W H,et al. Comparative study on antioxidant capacity of heteromorphic leaves of Populus euphratica[J]. Journal of Beijing Forestry University,2019,41(8):76‑83.
[32]刘晨,吴楚. SiO2纳米颗粒对黄瓜“新唐山秋瓜”幼苗根系解剖结构和气体交换的影响[J]. 安徽农业大学学报,2020,47(1):148‑154.
LIU C,WU C. Effects of SiO2 nanopaticles on root anatomy and gas exchange of Cucumis sativus cv. “Qiugua of New Tangshan”[J]. Journal of Anhui Agricultural University,2020,47(1):148‑154.
[33]MA Y X,HUANG J,CAO C,et al. Effects of silver nanoparticles on resistance characteristics of the wetland plant Typha orientalis in a hydroponic system[J]. Journal of Southeast University(English Edition),2019,35(3):381‑388.
[34]柯博洋,李文龙,张彩英. 大豆SWEET基因在荚粒发育过程中与逆境胁迫下的表达[J].中国农业科技导报,2023,25(8):33‑52.
KE B Y,LI W L,ZHANG C Y. Expressions of SWEET genes during pod and seed developments and under different stress conditions in soybean[J].Journal of Agricultural Science and Technology,2023,25(8):33‑52.
[35]艾克热木·阿布拉,董宗炜,艾沙江·艾力,等. 和田河下游植被分布及生理指标对水分条件的响应[J]. 林业与环境科学,2022,38(5):77‑87.
AIKEREMU A,DONG Z W,AISHAJIANG A,et al.Responses of vegetation distribution and physiological indexes to water condition in the lower reaches of Hetian River[J]. Forestry and Environmental Science,2022,38(5):77‑87.
[36]龚束芳,刘阳,速馨逸,等.纳米硅肥对远东芨芨草幼苗模拟抗旱的影响[J].草业科学,2018,35(12):2924‑2930.
GONG S F,LIU Y,SU X Y,et al. Influence of nano‑silicon fertilizer on osmotic stress in Achnatherum extremiorientale[J]. Pratacultural Science,2018,35(12):2924‑2930.
[37]SHEKHAWAT K, ALMEIDA‑TRAPP M,GARCÍA‑RAMÍREZ G X,et al. Beat the heat:Plantand microbe‑mediated strategies for crop thermotolerance[J]. Trends in Plant Science,2022,27(8):802‑813.
[38]刘晓青,赵晖,耿兴敏,等.高温胁迫下杜鹃叶片AsA-GSH循环的亚细胞定位分析[J].江苏农业科学,2021,49(18):128‑133.
LIU X Q,ZHAO H,GENG X M,et al. Study on sub‑cellular distribution of AsA‑GSH cycle in Rhododendron leaves under high temperature stress[J].Jiangsu Agricultural Sciences,2021,49(18):128‑133.
[39]韩一林,王鑫朝,许馨露,等.毛竹幼苗抗氧化酶和AsA-GSH循环对高温干旱及协同胁迫的响应[J]. 浙江农林大学学报,2018,35(2):268‑276.
HAN Y L,WANG X Z,XU X L,et al. Responses of anti‑oxidant enzymes and the ascorbate‑glutathione cycle to heat,drought,and synergistic stress in Phyllostachys edulis seedlings[J].Journal of Zhejiang A & F University,2018,35(2):268‑276.
[40]刘书仁,郭世荣,程玉静,等.外源脯氨酸对高温胁迫下黄瓜幼苗叶片AsA-GSH循环和光合荧光特性的影响[J]. 西北植物学报,2010,30(2):309‑316.
LIU S R,GUO S R,CHENG Y J,et al. Effects of exogenous proline on the ascorbat‑glutahione cycle and photosynthetic fluorescence characteristics in leaves of cucumber seedlings under high temperature stress[J].Acta Botanica Boreali‑Occidentalia Sinica,2010,30(2):309‑316.
[41]孙军利,赵宝龙,郁松林. SA对高温胁迫下葡萄幼苗AsA-GSH循环的影响[J].核农学报,2015,29(4):799‑804.
SUN J L,ZHAO B L,YU S L. Effects of exogenous salicylic acid(SA) on ascorbate glutathione cycle(AsA‑GSH)circulation metabolism in grape seedlings under high temperature stress[J].Journal of Nuclear Agricultural Sciences,2015,29(4):799‑804.
[42]ZHAO L J, BAI T H, WEI H, et al.Nanobiotechnology‑based strategies for enhanced crop stress resilience[J].Nature Food,2022,3:829‑836.
[43]XU W L,FENG Y C,DING Z X,et al.Peroxidase like Zn doped Prussian blue facilitates salinity tolerance in winter wheat through seed dressing[J]. International Journal of Biological Macromolecules,2024,267(Pt2):131477.
[44]杨素爽,黄雅茹,郭雨亭,等. SiO2NPs纳米材料对草莓生长和高温逆境的作用[J]. 中国南方果树,2023,52(3):181‑185.
YANG S S,HUANG Y R,GUO Y T,et al. Effects of SiO2NPs nano‑materials on strawberry growth and high
temperature stress[J]. South China Fruits,2023,52(3):181‑185.
|