[1]杨尚钊,张宏胜,李超芹,等.我国粮食安全的现状、问题及对策[J].粮食问题研究,2023(1):14-17.
YANG
S Z,ZHANG H S,LIC Q,et al.Current
situation,problems and countermeasures of China’s food security[J].Grain Issues Research,2023(1):14‑17.
[2]李士萌 .如何守住粮食安全底线?[J].中国报道, 2023(6):24‑26.
LI S M.How to hold the bottom line of food security?[J].China Report,2023(6):24‑26.
[3]李智,张艳飞,杨卫东,等.粮仓粮食数量监测技术研究现状与展望[J].中国粮油学报,2023,38(10):243‑249.
LI Z,ZHANG Y F,YANG W D,et al. Research status and prospect
of grain quantity monitoring technology in granaries[J].Journal of the Chinese
Cereals and Oils Association,2023,38(10):243‑249.
[4]宋锋,罗菊.散装稻谷实物清查应用方法探析[J].粮食流通技术,2010(5):22‑25.
SONG F,LUO
J.A discussion of the application of checkin kind on bulk paddy[J].Grain Distribution Technology,2010(5):22‑25.
[5] 国家发展和改革委员会,国家粮食和物资储备局,财政部,等 .粮食库存检查办法[ EB/OL].(2022‑12‑23)[2024‑01‑20].http://www.lswz.gov.cn/html/zcfb/ 2023‑01/06/content_273342.shtml.
National Development
and Reform Commission,National Food and Strategic Reserves Administration,Ministry
of Finance,et al. Measures for checking grain inventory[EB/
OL].(2022‑12‑23)[2024‑01‑20].http://www.lswz.gov.cn/html/zcfb/2023‑01/06/content_273342.
shtml.
[6] 张德贤,张苗,张庆辉,等.基于底面压强的粮仓储量估测方法[J].农业工程学报, 2017,33(10):287‑294.
ZHANG D X,ZHANG M,ZHANG Q H,et al.
Granary storage quantity detection method based on bottom pressure estimation[J].Transactions of the ChineseSociety of Agricultural Engineering,2017,33(10): 287‑294.
[7]张德贤,杨铁军,傅洪亮,等.粮仓储粮数量在线检测模型[J].自动化学报, 2014,40(10):2213‑2220.
ZHANG D X,YANG T J,FU H L,et
al.An onlinedetection model of granary storage quantity[J].Acta Automatica Sinica,2014,40(10):2213‑2220.
[8]许启铿,周晓军,吴强,等.便携式粮食库存数量检测设备研发及应用[J].粮油食品科技, 2023,31(2):41‑46.
XU Q K,ZHOU X J,WU Q,et
al.Research and application of portable grain inventory measurement equipment[J].Science and Technology of Cereals,Oils and
Foods,2023,31(2):41‑46.
[9]杨勇 .智能化粮库计量技术与综合管理系统的研究与实现[D].西安:陕西科技大学, 2012.
YANG Y.Research and application of measurement
technology and integrated management system in intelligent grain depot[D].Xi’an:Shaanxi University of Science & Technology,2012.
[10]张福钊,李成,于海华,等.
3D雷达扫描技术在粮油行业料位监控中的应用研究[
J].粮食与食品工业, 2020,27(3):50‑51.
ZHANG F Z,LI C,YU
H H,et al.The applicationresearch of 3D radar scanning
technology in levelmonitoring of grain and oil industry[J].Cereal & Food Industry,2020,27(3):50‑51.
[11]刘永 .基于图像处理的袋装仓粮食数量智能测算的研究[D].重庆:重庆交通大学,
2009.
LIU Y.Study for packaged granary grain
quantityintelligent reckoning based on image processing[D].Chongqing:Chongqing Jiaotong University,2009.
[12]方兴林 .基于双目立体视觉的储备粮数量智能识别算法研究[D].重庆:重庆交通大学, 2009. FANG X L.
Reserve grain quantity intelligent
recognition algorithm research based on binocular stereo vision[D].Chongqing:Chongqing Jiaotong University,2009.
[13]田萱,王亮,丁琪 .基于深度学习的图像语义分割方法综述[J].软件学报, 2019,30(2):440‑468.
TIAN X,WANG L,DING
Q.Review of imagesemantic segmentation based on deep learning[J].Journal
of Software,2019,30(2):440‑468.
[14]韦钙兴,易文龙,刘昱成,等.基于改进 U-Net的水稻叶片细胞分割方法研究[J].河南农业科学, 2023,52
(3):153‑160.WEI G X,YI W L,LIU Y C,et al.
Research onimproved U‑Net method for rice leaf cell segmentation[J].Journal of Henan Agricultural Sciences,2023,52(3):153‑160.
[15]吕宗旺,王玉琦,孙福艳 .基于改进 U-Net的不同容重小麦籽粒识别检测[J].河南农业科学, 2023,52(10):141‑152.
LÜ Z W,WANG Y Q,SUN F Y.Identification anddetection of wheat kernels with different
volume weight based on improved U‑Net[J].Journal of
Henan Agricultural Sciences,2023,52(10):141‑152.
[16]乌兰,苏力德,贾立国,等.基于改进 DeepLabv3+网络的马铃薯根系图像分割方法[ J].农业工程学报, 2023,39(3):134‑144.
WU L,SU L D,JIA
L G,et al. Image segmentation ofpotato roots using an
improved DeepLabv3+ network[J].Transactions of the Chinese Society of Agricultural Engineering,2023,39(3):134‑144.
[17]孙君顶,张宏英 .
DMDR-UNet:一种眼底视网膜血管分割算法[J].河南理工大学学报(自然科学版),2023,42(6):142‑148.
SUN J D,ZHANG H Y. DMDR‑UNet:An algorithm for retinal blood vessel segmentation[J].Journal of Henan Polytechnic University(Natural Science),2023,42(6):142‑148.
[18] XUW
J,ZHU Q.A semantic segmentation methodwith emphasis on
the edges for automatic vessel wallanalysis[J].Applied Sciences,2022,12(14):7012.
[19]王一,龚肖杰,苏皓 .基于改进 U-net的金属工件表面缺陷图像分割方法[ J].应用光学, 2023,44(1):86‑92.
WANG Y,GONG X J,SU H. Image segmentationmethod of surface defects for
metal workpieces basedon improved U‑net[J].Journal of Applied Optics,2023,44(1):86‑92.
[20]赵鹤,杨晓洪,杨奇,等.融合注意力机制的金属缺陷图像分割方法[ J].光电子·激光, 2021,32(4): 403‑408.
ZHAO
H,YANG X H,YANG Q,et
al.Metal defectimage segmentation algorithm combined with attentionmechanism[J].Journal of Optoelectronics·Laser,2021,32(4):403‑408.
[21]建瑞博,蔡智勇,杨自尚,等.基于 U-Net的田间小麦收获边界图像分割方法研究[J].河南农业大学学报, 2023,57(3):444‑450.
JIAN R B,CAI Z Y,YANG
Z S,et al.Research on image segmentation method of field
wheat harvest boundary based on U‑Net[J].Journal of Henan Agricultural University,2023,57(3):444‑450.
[22]曾镜源,洪添胜,杨洲 .基于实例分割的柚子姿态识别与定位研究[J].河南农业大学学报, 2021,55(2):287‑294.
ZENG J Y,HONG T S,YANG Z. Research on pomelo pose recognition and
location based on instance segmentation[J].Journal of Henan Agricultural University,2021,55(2):287‑294.
[23]LONG
J,SHELHAMER E,DARRELL T. Fully convolutional networks for semantic
segmentation[C]//
2015 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).
Boston,MA,USA:IEEE,2015:3431‑3440.
[24]RONNEBERGER
O,FISCHER P,BROX T. U‑net:Convolutional networks for biomedical image
segmentation[M]//Lecture
notes in computer science. Cham: Springer
International Publishing,2015:234‑241.
[25]CHEN
L C,HU Y,PAPANDREOU
G,et al.Encoder‑decoder with atrous separable
convolution forsemantic image segmentation[M]//Lecture
notes in computer science. Cham:Springer
International Publishing,2018:833‑851.
[26]ZHAO
H S,SHI J P,QI
X J,et al.Pyramid scene parsing network[C]//2017
IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu,HI,USA:IEEE,2017:6230‑6239.
[27]莫小琴 .基于最小二乘法的线性与非线性拟合[J].无线互联科技, 2019,16(4):128‑129.
MO
X Q.Linear and nonlinear fitting based on leastsquares method[J].Wireless Internet Technology,2019,16(4):128‑129.
[28]吴九牛,高德成,蒋维栋,等.基于箱线图的插值法在空盒气压表数据处理中的应用[J].工业仪表与自动化装置, 2023(3):93‑98.
WU J N,GAO D C,JIANG
W D,et al.Application of interpolation method based on
box plots in data processing of aneroid barometer[J].Industrial Instrumentation & Automation,2023(3):93‑98.
|