Journal of Henan Agricultural Sciences ›› 2025, Vol. 54 ›› Issue (4): 155-166.DOI: 10.15933/j.cnki.1004-3268.2025.04.016

• Agricultural Information and Engineering and Agricultural Product Processing • Previous Articles     Next Articles

Detection and Counting of Sesame Capsules per Plant Based on Improved YOLOv8‐Track Model

LI Chenhao1,2,WANG Chuan1,3,LI Guoqiang2,ZHAO Qiaoli2,YANG Ping2,WANG Kai4,CHANG Shenglong3,ZHENG Guoqing2   

  1. (1.College of Computer and Information Engineering,Henan Normal University,Xinxiang 453007,China;2.Institute of Agricultural Information Technology,Henan Academy of Agricultural Sciences/Key Laboratory of Huang‐Huai‐Hai Smart Agricultural Technology,Ministry of Agriculture and Rural Affairs,Zhengzhou 450002,China;3.College of Software,Henan Normal University,Xinxiang 453007,China;4.Henan Soil and Fertilizer Station,Zhengzhou 450002,China)
  • Received:2024-09-06 Published:2025-04-15 Online:2025-05-20

基于改进YOLOv8-Track 的芝麻单株蒴果检测计数研究

李琛昊1,2,王川1,3,李国强2,赵巧丽2,杨萍1,2,王凯4,常升龙3,郑国清2   

  1. (1.河南师范大学 计算机与信息工程学院,河南 新乡 453007;2.河南省农业科学院 农业信息技术研究所/农业农村部黄淮海智慧农业技术重点试验室,河南 郑州 450002;3.河南师范大学软件学院,河南 新乡 453007;4.河南省土壤肥料站,河南 郑州 450002)
  • 通讯作者: 王川(1976-),男,河南新乡人,副教授,硕士,主要从事人工智能理论及应用研究。E-mail:wangch@htu.edu.cn 王凯(1987-),男,河南商丘人,高级农艺师,主要从事智慧农业技术研究。E-mail:kaiwang19777@qq.com 常升龙(1990-),男,河南濮阳人,副教授,博士,主要从事遥感图像处理理论及其应用研究。E-mail:2024123@htu.edu.cn
  • 作者简介:李琛昊(1999-),男,河南鹤壁人,在读硕士研究生,研究方向:计算机视觉及农业信息化。E-mail:208283128@stu.htu.edu.cn
  • 基金资助:
    河南省科技攻关计划项目(252102111168,242102110351,232102110295);国家自然科学基金项目(62072159);河南省农业科学院优秀创新团队项目(2024TD07)

Abstract: Sesame capsules are an essential factor in the composition of sesame yield. In order to realize the accurate detection and counting of sesame capsules per plant,using object detection,multiple targets tracking and other technologies for dynamic tracking of capsules per plant is helpful to improve the efficiency of sesame breeding and cultivation management. Aiming at the phenomena of sesame capsules,such as small target,dense growth and overlapping occlusion,this study taked YOLOv8‐Track as the benchmark model,introduced small target detection head and Shuffle attention mechanism into the feature fusion network,and introduced MPDIOU loss function in the post‐processing stage of the model to construct SD‐YOLOv8‐Track model.In addition,this study utilized the ID counting method of model ByteTrack multi‐target tracking algorithm to track and count sesame capsules using a single rotating video of sesame as the model input. The results showed that when taking a single picture as input,the accuracy,recall,and mean average precision of the SD‐YOLOv8‐Track model for detecting capsules were 92.25%,92.4%,and 92.58%,respectively,indicating 5.94,6.6,and 6.31 percentage points higher than those of the original model YOLOv8‐Track.For the rotating video as input,the multiple object tracking accuracy and multiple object tracking precision of SD‐YOLOv8‐Track model were 89. 42% and 88.23%,respectively,which were 4.23 and 4.60 percentage points higher than the original model.The accuracy,missed detection rate,and error detection rate of the SD‐YOLOv8‐Track model were 93.27%,3.85%,and 2.88%,respectively.The accuracy rate was 5.61 percentage points higher than that of the original model,and the missed detection rate and false detection rate were 3.84 and 1.77 percentage points lower than that of the original model.The improved SD‐YOLOv8‐Track model performs better in detecting sesame capsules and is suitable for dynamic complete counting of sesame capsules in a plant.

Key words: Sesame capsules, Detection and counting, Multiple targets tracking, Dynamic counting, Shuffle attention, MPDIOU, YOLOv8‐Track

摘要: 单株蒴果数是芝麻产量构成的重要因素。为实现单株芝麻蒴果的准确检测计数,使用目标检测、多目标追踪等技术,动态追踪单株蒴果,有助于提高芝麻育种和栽培管理效率。针对芝麻蒴果小目标、生长密集、遮挡重叠等现象,以YOLOv8-Track为基准模型,在特征融合网络中引入小目标检测头和Shuffle attention注意力机制,在模型后处理阶段引入MPDIOU损失函数,构建了SD-YOLOv8-Track模型。然后利用模型ByteTrack多目标追踪算法的ID计数方法,以芝麻单株旋转视频作为模型输入,追踪统计芝麻蒴果数。结果表明,以单幅图片为输入,SD-YOLOv8-Track模型检测蒴果的准确率、召回率、平均精度分别为92.25%、92.4%、92.58%,比原模型YOLOv8-Track分别提高5.94、6.6、6.31百分点。以单株旋转视频为输入,SD-YOLOv8-Track模型的多目标追踪准确率、多目标追踪精确率分别为89.42%、88.23%,比原模型分别提高4.23、4.60百分点。SD-YOLOv8-Track模型检测蒴果的平均计数准确率、漏检率、误检率分别为93.27%、3.85%、2.88%,平均计数准确率比原模型提高5.61百分点,漏检率和误检率比原模型分别降低3.84、1.77百分点。改进后的SD-YOLOv8-Track模型具有较好的芝麻单株蒴果检测性能,适用于芝麻单株蒴果的动态完整计数

关键词: 芝麻蒴果, 检测计数, 多目标追踪, 动态计数, Shuffle attention, MPDIOU, YOLOv8-Track

CLC Number: