[1]李佳婷. 油莎豆的组织培养及多倍体诱导[D]. 广州:仲恺农业工程学院,2019.
LI J T. Tissue culture and polyploid induction of yellow nut‐sedge(Cyperus esculentus L.)[D].Guangzhou:Zhongkai University of Agriculture and Engineering,2019.
[2]魏尊苗,刘佳遥,程艳,等.秋水仙素诱变对油莎豆出苗率及品质的影响[J].河南农业科学,2022,51(11):50‐55.
WEI Z M,LIU J Y,CHENG Y,et al. Effect of colchicine mutagenesis on emergence rate and quality of tigernut (Cyperus esculentus L.)[J].Journal of Henan Agricultural Sciences,2022,51(11):50‐55.
[3]黄明华,王学华,庞震宇. 油莎豆的研究现状及展望[J].作物研究,2013,27(3):293‐295.
HUANG M H,WANG X H,PANG Z Y. Research status and prospect of Cyperus esculentus L[J].Crop Research,2013,27(3):293‐295.
[4]ARAFAT S,GAAFAR A,BASUNY A M M,et al. Chufa tubers(Cyperus esculentus L.):As a new source of food[J].World Applied Sciences Journal,2009,7:151‐156.
[5]OZCAN M M,GUMUSCU A,ER F,et al. Chemical and fatty acid composition of Cyperus esculentus[J].Chemistry of Natural Compounds,2010,46(2):276‐277.
[6]史先飞,高宇,黄旭升,等. 油莎豆CeWRKY转录因子响应非生物胁迫的功能表征[J].草业学报,2023,32(8):186‐201.
SHI X F,GAO Y,HUANG X S,et al.Functional characterization of Cyperus esculentus CeWRKY transcription factors in response to abiotic stress[J].Acta Prataculturae Sinica,2023,32(8):186‐201.
[7]QUAN R D,LIN H X,MENDOZA I,et al. SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress[J].The Plant Cell,2007,19(4):1415‐1431.
[8]GONG Z Z. Plant abiotic stress:New insights into the factors that activate and modulate plant responses[J].Journal of Integrative Plant Biology,2021,63(3):429‐430.
[9]ZHU J K. Salt and drought stress signal transduction in plants[J].Annual Review of Plant Biology,2002,53:247‐273.
[10]陈俊.碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点[D].长春:东北师范大学,2006:4‐10.
CHEN J. Physiological responses of antioxidant enzyme system to alkali‐saline mixed stress in the seedlings of Kochia sieversiana[D].Changchun:Northeast Normal University,2006:4‐10.
[11]岩学斌,袁金海. 盐胁迫对植物生长的影响[J].安徽农业科学,2019,47(4):30‐33.
YAN X B,YUAN J H. Effects of salt stress on plant growth[J]. Journal of Anhui Agricultural Sciences,2019,47(4):30‐33.
[12]薛斌龙,李丕全,张闰璇,等. 石墨烯溶胶对树莓组培苗苗期生理生化的影响[J].河南林业科技,2020,40(4):11‐15.
XUE B L,LI P Q,ZHANG R X,et al. Effects of graphene Sol on physiology and biochemistry of Rubus corchorifolius tissue culture seedlings at seedling stage[J].Journal of Henan Forestry Science and Technology,2020,40(4):11‐15.
[13]SREENIVASULU N,RAMANJULU S,RAMACHANDRAKINI K,et al.Total peroxidase activity and peroxidase isoforms as modified by salt stress in two cultivars of fox‐tail millet with differential salt tolerance[J].Plant Science,1999,141(1):1‐9.
[14]TANG W,NEWTON R J. Polyamines reduce salt‐induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine[J].Plant Growth Regulation,2005,46(1):31‐43.
[15]KOHLER J,HERNÁNDEZ J A,CARAVACA F,et al.Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress[J].Environmental and Experimental Botany,2009,65(2/3):245‐252.
[16]李焕勇,杨秀艳,唐晓倩,等. 植物响应盐胁迫组学研究进展[J].西北植物学报,2016,36(12):2548‐2557.
LI H Y,YANG X Y,TANG X Q,et al. Omics research progress of plants under salt stress[J].Acta Botanica Boreali‐Occidentalia Sinica,2016,36(12):2548‐2557.
[17]阮航,多浩源,范文艳,等.AtERF49在拟南芥应答盐碱胁迫中的作用[J].生物技术通报,2023,39(1):150‐156.
RUAN H,DUO H Y,FAN W Y,et al. Role of the AtERF49 in the responses to salt‐alkali stress in Arabidopsis[J].Biotechnology Bulletin,2023,39(1):150‐156.
[18]陆程张.Na2CO3胁迫下玉米苗期根部转录组表达谱分析[D].延边:延边大学,2021.
LU C Z.Analysis of transcriptome expression profile of maize seedling roots under Na2CO3 stress[D].Yanbian:Yanbian University,2021.
[19]王会伟,张向歌,李春鑫,等. 油莎豆耐盐性评估及盐胁迫下幼苗根系转录组学分析[J].作物学报,2023,49(7):1882‐1894.
WANG H W,ZHANG X G,LI C X,et al. Evaluation of salt tolerance in Cyperus esculentus and transcriptomic analysis of seedling roots under salt stress[J]. Acta Agronomica Sinica,2023,49(7):1882‐1894.
[20]马广民.水杨酸对盐胁迫下苦瓜种子萌发及幼苗生长的影响[J].中国瓜菜,2024,37(2):100‐105.
MA G M.Effects of salicylic acid on seed germination and seedling growth of bitter gourd under salt stress[J].China Cucurbits and Vegetables,2024,37(2):100‐105.
[21]赵琦琦,张斌,郭玉静,等.不同油莎豆种质资源苗期耐盐性鉴定评价[J]. 山东农业科学,2022,54(9):14‐21.
ZHAO Q Q,ZHANG B,GUO Y J,et al. Identification and evaluation of salt tolerance of different Cyperus esculentus germplasm resources at seedling stage[J].Shandong Agricultural Sciences,2022,54(9):14‐21.
[22]刘佳遥,程艳,魏尊苗,等. 外源激素对干旱胁迫下油莎豆生长、产量及生理特性的影响[J].河南农业科学,2022,51(11):42‐49.
LIU J Y,CHENG Y,WEI Z M,et al. Effects of exogenous hormones on growth,yield and physiological characteristics of tigernut(Cyperus esculentus L.)under drought stress[J]. Journal of Henan Agricultural
Sciences,2022,51(11):42‐49.
[23]李合生. 植物生理生化试验原理和技术[M]. 北京:高等教育出版社,2000.
LI H S. Principles and techniques of plant physiological and biochemical experiment[M].Beijing:Higher Education Press,2000.
[24]张志良,瞿伟菁. 植物生理学实验指导[M].3版. 北京:高等教育出版社,2003.
ZHANG Z. L,ZHAI W J. Experimental instruction in plant physiology[M]. 3rd ed. Beijing:Higher Education Press,2003.
[25]高俊凤. 植物生理学实验指导[M].北京:高等教育出版社,2006.
GAO J F. Experimental supervision of plant physiology[M].Beijing:Higher Education Press,2006.
[26]BUCHFINK B,XIE C,HUSON D H. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods,2015,12(1):59‐60.
[27]KANEHISA M,GOTO S,KAWASHIMA S,et al.The KEGG resource for deciphering the genome[J].Nucleic Acids Research,2004,32:D277‐D280.
[28]XIE C,MAO X Z,HUANG J J,et al. KOBAS 2.0:A web server for annotation and identification of enriched pathways and diseases[J].Nucleic Acids Research,2011,39:W316‐W322.
[29]JONES P,BINNS D,CHANG H Y,et al. InterProScan 5:Genome‐scale protein function classification[J].Bioinformatics,2014,30(9):1236‐1240.
[30]ASHBURNER M,BALL C A,BLAKE J A,et al.Gene ontology:Tool for the unification of biology.The Gene Ontology Consortium[J].Nature Genetics,2000,25 (1):25‐29.
[31]EDDY S R. Profile hidden Markov models[J].Bioinformatics,1998,14(9):755‐763.
[32]FINN R D,BATEMAN A,CLEMENTS J,et al. Pfam:The protein families database[J].Nucleic Acids Research,2014,42:D222‐D230.
[33]MU Z S,WEI Z M,LIU J Y,et al. Rna‐Seq analysis demonstrates different strategies employed by tiger nuts(Cyperus esculentus L. )in response to drought stress[J].Life,2022,12(7):1051.
[34]SCHMITTGEN T D,LIVAK K J.Analyzing real‐time PCR data by the comparative CT method[J].Nature Protocols,2008,3:1101‐1108.
[35]吴孚桂,刘慧芳,聂佳俊,等. 水稻幼穗响应盐胁迫的转录组分析[J].热带作物学报,2021,42(5):1274‐1281.
WU F G,LIU H F,NIE J J,et al. Transcriptome analysis of young spikes in rice under salt stress[J].Chinese Journal of Tropical Crops,2021,42(5):1274‐1281.
[36]孙璐,周宇飞,李丰先,等.盐胁迫对高粱幼苗光合作用和荧光特性的影响[J].中国农业科学,2012,45(16):3265‐3272.
SUN L,ZHOU Y F,LI F X,et al.Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of Sorghum seedlings[J].Scientia Agricultura Sinica,2012,45(16):3265‐3272.
[37]孔德真,段震宇,王刚等,盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J].生物技术通报,2023,39(6):199‐207.
KONG D Z,DUAN Z Y,WANG G,et al. Physiological characteristics and transcriptome analysis of Sorghum bicolor×S.sudanense seedlings under salt‐alkali stress[J].Biotechnology Bulletin,2023,39(6):199‐207.
[38]高彩婷,刘景辉,徐寿军,等. 燕麦盐胁迫响应基因的差异表达与生理响应的关系[J]. 西北植物学报,2015,35(7):1385‐1393.
GAO C T,LIU J H,XU S J,et al. Exploring the relationship of differentially expressed genes and physiological of oats in response to salt stress[J].Acta Botanica Boreali‐Occidentalia Sinica,2015,35(7):1385‐1393.
[39]孙瑞芬,张艳芳,郭树春,等. 基于RNA-Seq技术的盐胁迫向日葵转录组信息分析[J].分子植物育种,2015,13(12):2736‐2742.
SUN R F,ZHANG Y F,GUO S C,et al.Analysis on transcriptome of sunflower under salt stress based on RNA‐seq technology[J]. Molecular Plant Breeding,2015,13(12):2736‐2742.
[40]魏嘉,于志晶,钱雪艳,等. 野生大豆响应盐碱胁迫转录组分析[J/OL].分子植物育种,2023[2023‐12‐14].http://kns.cnki.net/kcms/detail/46.1068.S.20231031.0854.004.html.
WEI J,YU Z J,QIAN X Y,et al.Transcriptome analysis of Glycine soja in response to Na2CO3 stress[J/OL]. Molecular Plant Breeding,2023[2023‐12‐14].http://kns.cnki.net/kcms/detail/46.1068.S.20231031.0854.004.html.
[41]张飞,王艳秋,朱凯,等.不同耐盐性高粱在盐逆境下的比较转录组分析[J].中国农业科学,2019,52(22):4002‐4015.
ZHANG F,WANG Y Q,ZHU K,et al.Comparative transcriptome analysis of different salt tolerance Sorghum(Sorghum bicolor L. moench)under salt stress[J].Scientia Agricultura Sinica,2019,52(22):4002‐4015.
[42]胡金鹏,潘雅清,张亚琪,等.蒙古岩黄芪响应盐胁迫转录组学分析[J]. 分子植物育种,2021,19(23):7758‐7770.
HU J P,PAN Y Q,ZHANG Y Q,et al.Transcriptome analysis of Hedysarum mongolicum in response to salt stress[J].Molecular Plant Breeding,2021,19(23):7758‐7770.
[43]吉福桑,李元元,唐露,等.香蕉叶片响应盐胁迫转录组分析[J].分子植物育种,2017,15(3):875‐882.
JI F S,LI Y Y,TANG L,et al.Analysis of banana leaves responses salt stress of transcriptome[J].Molecular Plant Breeding,2017,15(3):875‐882.
[44]范娜,彭之东,白文斌. 盐敏感型与耐盐型高粱对盐胁迫反应的转录组差异分析[J].植物营养与肥料学报,2022,28(11):2130‐2142.
FAN N,PENG Z D,BAI W B. Analysis of transcriptome differences of salt‐sensitive and salt‐tolerant Sorghum under salt stress[J]. Journal of Plant Nutrition and Fertilizers,2022,28(11) :2130‐2142.
[45]巴图.NaCl胁迫下大麦幼苗的生理响应与根系转录组测序分析[D].呼和浩特:内蒙古农业大学,2022.
BA T.Physiological response and transcriptome sequencing analysis of barley seedlings under NaCl stress[D].Hohhot:Inner Mongolia Agricultural University,2022.
[46]董明,再吐尼古丽·库尔班,吕芃,等.高粱苗期耐盐性转录组分析和基因挖掘[J].中国农业科学,2019,52(22):3987‐4001.
DONG M,KUERBAN Z,LÜ P,et al.Transcriptome analysis and gene mining of salt tolerance in sorghum seedlings(Sorghum bicolor L. Moench)[J].Scientia Agricultura Sinica,2019,52(22):3987‐4001.
|