河南农业科学 ›› 2025, Vol. 54 ›› Issue (8): 1-14.DOI: 10.15933/j.cnki.1004-3268.2025.08.001
许怡1,陈孝杨1,2,牛经纬1,刘晴1,蒋进鹏1
收稿日期:
2025-05-21
接受日期:
2025-07-10
出版日期:
2025-08-15
发布日期:
2025-08-15
通讯作者:
陈孝杨(1976-),男,安徽合肥人,教授,博士,主要从事矿山生态安全保障技术研究。E-mail:chenxy@aust.edu.cn
作者简介:
许怡(2001-),女,安徽淮南人,在读硕士研究生,研究方向:矿山土壤修复。E-mail:xuyi20010605@163.com
基金资助:
XU Yi1,CHEN Xiaoyang1,2,NIU Jingwei1,LIU Qing1,JIANG Jinpeng1
Received:
2025-05-21
Accepted:
2025-07-10
Published:
2025-08-15
Online:
2025-08-15
摘要: 淮河流域是我国重要的粮食生产基地和煤炭供应基地,但煤炭开采活动导致矿区地表沉陷、耕地面积减少、肥力下降、土壤环境风险增加以及固碳潜力下降等。系统梳理了淮河流域煤矿区耕地的数量、质量、生态受损现状,分析了其受损机制,重点综述了近年来国内外学者在受损耕地数量调控、质量提升和生态修复方面的研究进展。煤炭开采导致耕地数量减少、质量下降、生态系统受损,但通过绿色开采技术、土地复垦技术、改良耕作方式以及生物修复技术等综合措施,能够有效缓解耕地受损问题。未来应进一步优化集成耕地调控技术体系,加强耕地源头保护与煤炭开采过程治理,推动煤炭开采与耕地保护协同发展,加强受损耕地生态修复与碳汇协同增效,并加强长期监测预评估,以保障区域粮食安全、能源安全及可持续发展。
中图分类号:
许怡, 陈孝杨, 牛经纬, 刘晴, 蒋进鹏. 淮河流域煤矿区受损耕地数量、质量及生态调控技术研究进展[J]. 河南农业科学, 2025, 54(8): 1-14.
XU Yi, CHEN Xiaoyang, NIU Jingwei, LIU Qing, JIANG Jinpeng. Research Progress on the Quantity,Quality and Ecological Regulation Technology of Damaged Arable Land in Coal Mining Areas of the Huaihe River Basin[J]. Journal of Henan Agricultural Sciences, 2025, 54(8): 1-14.
[1]江激宇,刘嘉铭,张士云. 淮河流域谷物生产水足迹及用水效率研究[J]. 农业资源与环境学报,2024,41(2):371‑382. JIANG J Y,LIU J M,ZHANG S Y. Study on water footprint and water efficiency of cereal production in the Huai River Basin[J]. Journal of Agricultural Resources and Environment,2024,41(2):371‑382. [2]何刚,谷雅娴,鲍珂宇. 淮河流域工业生态安全时空演变评价:以安徽段为例[J].安全与环境学报,2023,23(4):1327‑1335. HE G,GU Y X,BAO K Y. Evaluation of temporal and spatial evolution of industrial ecological security in Huaihe River Basin:A case study for Anhui section[J].Journal of Safety and Environment,2023,23(4):1327‑1335. [3]HU Z Q,YANG G H,XIAO W,et al. Farmland damage and its impact on the overlapped areas of cropland and coal resources in the eastern plains of China[J].Resources,Conservation and Recycling,2014,86:1‑8. [4]郑慧慧,秦佳星,桑之婷,等.基于区域特征的煤炭开采沉陷对土壤特性影响研究进展[J].土壤通报,2022,53(6):1481‑1491. ZHENG H H,QIN J X,SANG Z T,et al. Progress review on the influence of coal mining subsidence on soil properties based on regional characteristics[J].Chinese Journal of Soil Science,2022,53(6) :1481‑1491. [5]ZHANG J M,YAN Y G,DAI H Y,et al. Hyperbolic secant subsidence prediction model under thick loose layer mining area[J]. Minerals,2022,12(8):1023. [6]徐明岗,卢昌艾,张文菊,等. 我国耕地质量状况与提升对策[J]. 中国农业资源与区划,2016,37(7):8‑14. XU M G,LU C A,ZHANG W J,et al. Situation of the quality of arable land in China and improvement strategy[J].Chinese Journal of Agricultural Resources and Regional Planning,2016,37(7):8‑14. [7]唐若宜,李发文.基于流域尺度的耕地时空格局演变与分异性研究[J].水资源与水工程学报,2024,35(4):187‑197. TANG R Y,LI F W. Spatiotemporal evolution of cultivated land on Basin scale[J]. Journal of Water Resources and Water Engineering,2024,35(4):187‑197.[8]彭碧媛. 基于ArcSWAT的淮河流域安徽段农业面源污染模拟与应用研究[D]. 淮南:安徽理工大学,2022. PENG B Y. Simulation and application of agricultural non‑point source pollution in Anhui section of Huaihe River Basin based on ArcSWAT[D]. Huainan:Anhui University of Science and Technology,2022.[9]邓军,马泉来,卫华鹏,等. 粮食安全视角下河南省淮河流域耕地资源时空演变[J].水土保持研究,2021,28(4):390‑396. DENG J,MA Q L,WEI H P,et al. Spatial‑temporal evolution of cultivated land resources in Huai River Basin of Henan Province from the perspective of food security[J]. Research of Soil and Water Conservation,2021,28(4):390‑396. [10]陈超,卫志超,王果,等. 典型煤粮复合区采煤沉陷积水区域时空演变特征与驱动力[J]. 中国矿业,2024,33(11):77‑85. CHEN C,WEI Z C,WANG G,et al. Temporal and spatial evolution characteristics and driving forces of coal mining subsidence waterlogging area in typical overlapped area of coal‑crop[J]. China Mining Magazine,2024,33(11):77‑85. [11]ZHANG X Y,CHEN X Y,ZHOU Y Z,et al.Prediction of the temporal and spatial evolution of subsidence waters in the Huainan mining area based on the CA‑Markov model[J].Environment,Development and Sustainability,2024,27(7):1‑21. [12]刘辉,朱晓峻,程桦,等. 高潜水位采煤沉陷区人居环境与生态重构关键技术:以安徽淮北绿金湖为例[J].煤炭学报,2021,46(12):4021‑4032. LIU H,ZHU X J,CHENG H,et al. Key technology of human environment and ecological reconstruction inhigh submersible level coal mining subsidence area:A case study from Lüjin Lake,Huaibei[J]. Journal of China Coal Society,2021,46(12):4021‑4032. [13]XU J K,YAN C D,BOOTA M W,et al. Research on automatic identification of coal mining subsidence area based on InSAR and time series classification[J].Journal of Cleaner Production,2024,470:143293. [14]李学良,孙光,闫建成,等. 典型高潜水位矿区采煤塌陷地损毁特征及复垦模式分析[J].煤炭技术,2021,40(7):1‑4. LI X L,SUN G,YAN J C,et al. Analysis of damage characteristics and reclamation model of coal mining subsidence land in typical high potential water level mining area[J]. Coal Technology,2021,40(7):1‑4. [15]马荣,何建国,章梅,等. 安徽恒源煤矿区土壤肥力特征及重金属风险评价[J].中国煤炭地质,2023,35(1):50‑56. MA R,HE J G,ZHANG M,et al. Soil fertility characteristics and heavy metal risk assessment in Hengyuan coal mine area,Anhui Province[J]. Coal Geology of China,2023,35(1):50‑56. [16]范廷玉,陈迎香,路啊康,等. 淮北矿区地表拉张裂隙区耕地土壤主要养分特征[J].水土保持通报,2023,43(1):8‑15. FAN T Y,CHEN Y X,LU A K,et al. Main soil nutrient characteristics of cultivated land in surface tension fracture area of Huaibei mining area[J].Bulletin of Soil and Water Conservation,2023,43(1):8‑15. [17]李阳,郑刘根,程桦,等. 采煤沉陷区表层土壤氮、磷和有机质分布特征及相关性分析[J].环境污染与防治,2015,37(10):52‑57. LI Y,ZHENG L G,CHENG H,et al. Distribution and correlation analysis of topsoil organic matter,nitrogen and phosphorus in mining subsidence area[J].Environmental Pollution and Control,2015,37(10):52‑57. [18]陈永春,赵萍,郑刘根,等. 淮南潘一矿采煤沉陷复垦区土壤肥力时空变化特征[J].环境监测管理与技术,2021,33(3):21‑24. CHEN Y C,ZHAO P,ZHENG L G,et al. Temporal and spatial variation characteristics of soil fertility in coal mining subsidence reclamation area in Huainan Panyi mine[J].The Administration and Technique of Environmental Monitoring,2021,33(3):21‑24. [19]徐占军,赵思萌,王培周,等. 煤炭开采对“矿-农”复合区农田质量影响评价[J]. 农业工程学报,2020,36(9):273‑282. XU Z J,ZHAO S M,WANG P Z,et al. Evaluation of the impacts of coal mining on farmland quality in mine‑agriculture regions in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(9):273‑282. [20]高云飞,张凯,邓旭,等. 采煤沉陷区深层土壤物理性质时空变化研究[J].煤炭工程,2023,55(1):131‑135. GAO Y F,ZHANG K,DENG X,et al. Temporal and spatial variation of deep soil physical properties in coal mining subsidence area[J]. Coal Engineering,2023,55(1):131‑135. [21]李禹凝,王金满,张雅馥,等. 干旱半干旱煤矿区土壤水分研究进展[J].土壤,2023,55(3):494‑502. LI Y N,WANG J M,ZHANG Y F,et al. Soil water in arid and semi‑arid mining areas:A review[J]. Soils,2023,55(3):494‑502. [22]WANG L H. Study on soil nutrient loss and distribution characteristics in a coal mining subsidence area[J].Fresenius Environmental Bulletin,2020,29(10) :9211‑9217. [23]严家平,陈孝杨,王长垒,等. 煤矿开采地表沉陷区土壤养分流失与分布特征:以五沟煤矿为例[J].安徽理工大学学报(自然科学版),2017,37(6):41‑45. YAN J P,CHEN X Y,WANG C L,et al. Research on soil nutrient loss and distribution characteristics in coal mining subsidence area:A case of Wugou coal mine[J]. Journal of Anhui University of Science and Technology(Natural Science),2017,37(6):41‑45. [24]AZEEM M,ALI A,AROCKIAM JEYASUNDAR P G S,et al. Bone‑derived biochar improved soil quality and reduced Cd and Zn phytoavailability in a multi‑metal contaminated mining soil[J].Environmental Pollution,2021,277:116800. [25]孙贤斌,李玉成. 基于GIS的淮南煤矿废弃地土壤重金属污染生态风险评价[J].安全与环境学报,2015,15(2):348‑352. SUN X B,LI Y C. Potential ecological risk assessment of heavy metal distribution in the Datong deserted coal mining area in Huainan based on GIS[J]. Journal of Safety and Environment,2015,15(2):348‑352.[26]刘旭,郑刘根,陈欣悦,等. 淮南潘集矿区农田土壤重金属污染特征及在小麦中累积特征研究[J].环境污染与防治,2019,41(8):959‑964. LIU X,ZHENG L G,CHEN X Y,et al. Study on the heavy metals pollution characteristics of agricultural soil and their accumulation characteristics in wheat in Panji mining area, Huainan [J]. Environmental Pollution and Control,2019,41(8):959‑964. [27]谭敏. 典型高潜水位煤矿区重金属时空分布特征及复垦适宜性研究[D]. 徐州:中国矿业大学,2021. TAN M. Temporal and spatial distribution characteristics of heavy metals in typical high groundwater level coal mining areas and their reclamation suitability[D]. Xuzhou:China University of Mining and Technology,2021. [28]张成丽,王阳,白银雪,等. 禹州市废旧煤矿周边土壤重金属总量及有效态分析与评价[J]. 安全与环境学报,2019,19(6):2183‑2191. ZHANG C L,WANG Y,BAI Y X,et al. Analysis and assessment of total and available heavy metal of abandoned coal mined‑off land‑soils in Yuzhou City,Henan[J].Journal of Safety and Environment,2019,19(6):2183‑2191. [29]侯乐. 基于高光谱反演的煤矿区土壤重金属污染特征及风险评价[D]. 泰安:山东农业大学,2021. HOU L. Characteristics and risk assessment of heavy metal pollution in soil of coal mining area based on hyperspectral inversion[D]. Taian:Shandong Agricultural University,2021.[30]陈景平,胡振琪,袁冬竹,等. 采煤塌陷区搬迁村庄耕作半径变化特征及其影响研究[J].农业工程学报,2019,35(8):287‑295. CHEN J P,HU Z Q,YUAN D Z,et al. Change of farming radius of relocated villages and its influence in coal mining subsidence areas[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(8):287‑295. [31]顾霖骏,申艳军,王念秦,等. 煤矸石堆积区土壤重金属潜在危害评价及污染特征[J].西安科技大学学报,2022,42(5):942‑949. GU L J,SHEN Y J,WANG N Q,et al. Pollution characteristics and potential risk accessment of heavy metals in soil of coal gangue accumulation areas[J].Journal of Xi’an University of Science and Technology,2022,42(5):942‑949. [32]ZHANG Y H,HOU D Y,O’CONNOR D,et al. Lead contamination in Chinese surface soils:Source identification, spatial‑temporal distribution and associated health risks[J]. Critical Reviews in Environmental Science and Technology,2019,49(15):1386‑1423. [33]花洁,王健媛,陈运帷,等. 煤矿矿区土壤重金属及多环芳烃污染治理修复技术综述[J].环境工程技术学报,2024,14(1):139‑147. HUA J,WANG J Y,CHEN Y W,et al. A review of heavy metal and polycyclic aromatic hydrocarbon pollution treatment and remediation technologies in coal mine soils [J]. Journal of Environmental Engineering Technology,2024,14(1):139‑147. [34]安英莉,卞正富,戴文婷,等. 煤炭开采形成的碳源/碳汇分析:以徐州贾汪矿区为例[J].中国矿业大学学报,2017,46(2):415‑422. AN Y L,BIAN Z F,DAI W T,et al. Analysis on the gas carbon source and carbon sink in coal mining:A case study of Jiawang,Xuzhou[J]. Journal of China University of Mining and Technology,2017,46(2):415‑422. [35]杨熙萌,钱宝蔚,姬广兴,等. 淮河流域中上游碳储量时空变化特征及未来多情景模拟预测[J].环境科学,2024,45(10):5970‑5982. YANG X M,QIAN B W,JI G X,et al. Characteristics of spatial and temporal changes in carbon stocks in the middle and upper reaches of the Huaihe River Basin and future multi‑scenario simulation prediction[J].Environmental Science,2024,45(10):5970‑5982.[36]侯湖平,张绍良,丁忠义,等. 煤矿区土地利用变化对生态系统植被碳储量的影响:以徐州垞城矿为例[J]. 煤炭学报,2013,38(10):1850‑1855. HOU H P,ZHANG S L,DING Z Y,et al. Impact on vegetation carbon storage in ecosystem from land use change in coal mine area:A case study at Chacheng mine in Xuzhou mining area[J]. Journal of China Coal Society,2013,38(10):1850‑1855. [37]WANG Y M,ZHANG Z X,CHEN X. Land use transitions and the associated impacts on carbon storage in the Poyang Lake Basin,China[J]. Remote Sensing,2023,15(11):2703. [38]侯湖平,徐占军,张绍良,等. 煤炭开采对区域农田植被碳库储量的影响评价[J]. 农业工程学报,2014,30(5):1‑9. HOU H P,XU Z J,ZHANG S L,et al. Effect evaluation on vegetation carbon pool of region agro‑ecosystem by coal mining in mining area[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(5):1‑9. [39] 徐良骥,贺震东,刘潇鹏,等. 高潜水位矿区土地利用和碳储量时空变化规律与预测[J]. 煤炭科学技术,2024,52(1):355‑365. XU L J,HE Z D,LIU X P,et al. Spatio‑temporal variation and prediction of land use and carbon storage in high groundwater level mining area[J]. Coal Science and Technology,2024,52(1):355‑365.[40]ZHANG K,LIU S Y,BAI L,et al. Effects of underground mining on soil‑vegetation system:A case study of different subsidence areas[J]. Ecosystem Health and Sustainability,2023,9:122. [41]田惠文,张欣欣,毕如田,等. 煤炭开采导致的农田生态系统固碳损失评估[J]. 煤炭学报,2020,45(4):1499‑1509. TIAN H W,ZHANG X X,BI R T,et al. An assessment of the carbon sequestration loss of farmland ecosystems caused by coal mining[J].Journal of China Coal Society,2020,45(4) :1499‑1509. [42]刘祥宏,阎永军,刘伟,等. 碳中和战略下煤矿区生态碳汇体系构建及功能提升展望[J]. 环境科学,2022,43(4):2237‑2240. LIU X H,YAN Y J,LIU W,et al. System construction and the function improvement of ecological carbon sink in coal mining areas under the carbon neutral strategy[J]. Environmental Science,2022,43(4):2237‑2240. [43]方良成,陈永春,安士凯,等. 基于Landsat时序数据的高潜水位煤矿区植被扰动分析[J].煤田地质与勘探,2021,49(2):207‑215. FANG L C,CHEN Y C,AN S K,et al. Vegetation disturbance analysis in coal mining area with high ground water level based on Landsat time series NDVI data[J]. Coal Geology and Exploration,2021,49(2):207‑215. [44]XU Z J,ZHANG Y,YANG J,et al. Effect of underground coal mining on the regional soil organic carbon pool in farmland in a mining subsidence area[J]. Sustainability,2019,11(18):4961. [45]YU Y,CHEN S E,DENG K Z,et al. Subsidence mechanism and stability assessment methods for partial extraction mines for sustainable development of mining cities:A review[J]. Sustainability,2018,10 (1):113. [46]郎博,张立群. 煤矿覆岩离层注浆减沉技术研究及应用[J].煤炭工程,2024,56(6):66‑72. LANG B,ZHANG L Q. Grouting and subsidence reduction technology for separated layers of overlying strata at coal mines[J]. Coal Engineering,2024,56 (6):66‑72.[47]郑立军.重复采动覆岩离层井下钻孔注浆充填减沉技术[J]. 煤矿安全,2022,53(3):112‑119. ZHENG L J. Underground borehole‑based grouting and filling technology to overburden separation induced by repeated mining for ground subsidence control[J].Safety in Coal Mines,2022,53(3):112‑119.[48]徐良骥,张坤,刘潇鹏,等. 离层注浆开采关键层变形特征及地表沉陷控制效应[J]. 煤炭学报,2023,48(2):931‑942. XU L J,ZHANG K,LIU X P,et al. Deformation characteristic of key strata and control effect of surface subsidence in mining with grouting into overburden bed‑separation[J]. Journal of China Coal Society,2023,48(2):931‑942. [49]胡林,李兵,陈永春,等. 东部高潜水位矿区离层注浆减沉可行性分析[J]. 科学技术与工程,2024,24(23):9811‑9818. HU L,LI B,CHEN Y C,et al. Feasibility analysis of reducing subsidence by separated layer grouting in high‑phreatic‑water mining area in East China[J].Science Technology and Engineering,2024,24(23):9811‑9818. [50]王晓勇,王艳俊. 梁家煤矿似膏体连采连充技术及工程实践[J]. 煤炭技术,2023,42(3):101‑106. WANG X Y,WANG Y J. Paste‑like continuous mining and filling technology and engineering practice in Liangjia coal mine[J]. Coal Technology,2023,42(3):101‑106.[51]李西凡,熊祖强,王,等. 薄煤层充填开采超高水材料配比及充填工艺优化[J]. 煤矿安全,2020,51(9):162‑167. LI X F,XIONG Z Q,WANG Y,et al. Super high‑water material ratio and optimization of filling technology in thin coal seam filling mining[J]. Safety in Coal Mines,2020,51(9):162‑167.[52]王小勇,王照明,许海龙,等.水泥-粉煤灰胶结矸石充填材料的流变特性与固结机理[J]. 有色金属工程, 2024,14(6):134‑143.WANG X Y,WANG Z M,XU H L,et al. Rheological properties and consolidation mechanism of cement‑fly ash cemented gangue backfill material[J]. Nonferrous Metals Engineering,2024,14(6):134‑143. [53]李猛,张吉雄,邓雪杰,等. 含水层下固体充填保水开采方法与应用[J].煤炭学报,2017,42(1):127‑133. LI M,ZHANG J X,DENG X J,et al. Method of water protection based on solid backfill mining under water bearing strata and its application[J].Journal of China Coal Society,2017,42(1):127‑133.[54]种化省,陈曦. 锦丘煤矿膏体充填开采技术研究[J]. 能源与环保,2023,45(10):306‑310. CHONG H S,CHEN X. Study on paste backfilling mining technology in Jinqiu coal mine[J]. China Energy and Environmental Protection,2023,45(10):306‑310. [55]任帅,王方田,李少涛. 深部煤层超高水充填开采采动控制效果研究[J].矿业研究与开发,2021,41(5):11‑16. REN S,WANG F T,LI S T. Study on mining control effect of superhigh water backfilling mining in deep coal seam[J]. Mining Research and Development,2021,41(5):11‑16.[56]王成,孙如意,王春,等. 超高水材料充填开采技术研究[J]. 中国矿业,2020,29(2):94‑99. WANG C,SUN R Y,WANG C,et al. Research on super high‑water material filling technology[J]. China Mining Magazine,2020,29(2):94‑99.[57]王万红,王远,杜翠凤,等. 房柱法开采大面积采空区群的稳定性分析[J]. 矿业研究与开发,2020,40(8):41‑44. WANG W H,WANG Y,DU C F,et al. Stability analysis on large‑area goaf group in room and pillar mining method[J]. Mining Research and Development,2020,40(8):41‑44. [58]魏帅,贾建伟,梁大海. 宽煤柱窄条带点柱式充填开采技术与实践[J].中国矿业,2024,33(7):208‑215. WEI S,JIA J W,LIANG D H. Technology and practice of point‑pillar back‑filling mining with wide coal pillar and narrow strip[J]. China Mining Magazine,2024,33 (7):208‑215.[59]蓝航,韩科明,韩震. 深部条带煤柱蠕变影响下地表残余沉降及煤柱稳定性分析[J].煤炭学报,2022,47(S1):1‑12. LAN H,HAN K M,HAN Z. Analysis of surface residual settlement and coal pillar stability under the influence of creep of deep strip coal pillar[J]. Journal of China Coal Society,2022,47(S1):1‑12. [60]许家林,秦伟,轩大洋,等. 采动覆岩卸荷膨胀累积效应[J]. 煤炭学报,2020,45(1):35‑43. XU J L,QIN W,XUAN D Y,et al. Accumulative effect of overburden strata expansion induced by stress relief[J]. Journal of China Coal Society,2020,45(1):35‑43. [61]胡振琪. 我国土地复垦与生态修复30年:回顾、反思与展望[J]. 煤炭科学技术,2019,47(1):25‑35. HU Z Q. The 30 years’ land reclamation and ecological restoration in China:Review,rethinking and prospect[J]. Coal Science and Technology,2019,47 (1):25‑35. [62]卞正富,张国良,翟广忠. 采煤沉陷地疏排法复垦技术原理与实践[J]. 中国矿业大学学报,1996,25(4):84‑88. BIAN Z F,ZHANG G L,ZHAI G Z. Principle of dredging and draining method of subsided land reclamation for coal mining and its application[J].Journal of China University of Mining and Technology,1996,25(4):84‑88. [63]尚锦,刘慧颢,刘赛赛,等. 煤矸石充填复垦耕地重金属污染风险研判[J].河南农业科学,2023,52(12):69‑76. SHANG J,LIU H H,LIU S S,et al. Risk assessment of heavy metal pollution in reclaimed farmland with coal gangue filling[J]. Journal of Henan Agricultural Sciences,2023,52(12):69‑76. [64]胡振琪,邵芳,多玲花,等. 黄河泥沙间隔条带式充填采煤沉陷地复垦技术及实践[J].煤炭学报,2017,42(3):557‑566. HU Z Q,SHAO F,DUO L H,et al. Technique of reclaiming subsided land with Yellow River sediments in the form of spaced strips[J]. Journal of China Coal Society,2017,42(3):557‑566.[65]胡振琪,王培俊,邵芳. 引黄河泥沙充填复垦采煤沉陷地技术的试验研究[J]. 农业工程学报,2015,31(3):288‑295. HU Z Q,WANG P J,SHAO F. Technique for filling reclamation of mining subsidence land with Yellow River sedimen[t J]. Transactions of the Chinese Society of Agricultural Engineering,2015,31(3):288‑295. [66]胡振琪,多玲花,王晓彤. 采煤沉陷地夹层式充填复垦原理与方法[J]. 煤炭学报,2018,43(1):198‑206. HU Z Q,DUO L H,WANG X T. Principle and method of reclaiming subsidence land with inter‑layers of filling materals[J]. Journal of China Coal Society,2018,43(1):198‑206. [67]胡振琪,肖武. 矿山土地复垦的新理念与新技术:边采边复[J].煤炭科学技术,2013,41(9):178‑181. HU Z Q,XIAO W. New idea and new technology of mine land reclamation:Concurrent mining and reclamation[J]. Coal Science and Technology,2013,41 (9):178‑181. [68]李玲,王珂,王秀丽,等. 矿区复垦土壤研究进展[J]. 河南农业大学学报,2021,55(1):8‑14. LI L,WANG K,WANG X L,et al. Research progress on reclaimed soil in mining areas[J]. Journal of Henan Agricultural University,2021,55(1):8‑14. [69]FENG Z J,HU Z Q,LI G S,et al. Improving mine reclamation efficiency for farmland sustainable use:Insights from optimizing mining scheme[J]. Journal of Cleaner Production,2022,379:134615. [70]胡振琪,李根生,袁冬竹. 东部煤粮复合区采煤沉陷地边采边复时机[J]. 煤炭学报,2023,48(1):373‑387. HU Z Q,LI G S,YUAN D Z. Timing of concurrent mining and reclamation in coal‑grain overlapping areas with mining‑induced subsidence,Eastern China[J].Journal of China Coal Society,2023,48(1):373‑387. [71]王晓彤,胡振琪,梁宇生. 基于Hydrus-1D的黄河泥沙充填复垦土壤夹层结构优化[J]. 农业工程学报,2022,38(2):76‑86. WANG X T,HU Z Q,LIANG Y S. Structural optimization of reclaimed subsidence land interlayers filling with the Yellow River sediments using a Hydrus‑1D model[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(2):76‑86. [72]郭振忠,高强,李恩全,等. 矸石回填复垦技术在许厂煤矿土地治理中的应用[J].煤田地质与勘探,2019,47(S1):62‑64. GUO Z Z,GAO Q,LI E Q,et al. Application of gangue backfill reclamation technology in land management of Xuchang coal mine[J]. Coal Geology & Exploration,2019,47(S1):62‑64.[73]李根生. 东部煤粮复合区采复耦合机理与协调技术研究[D]. 徐州:中国矿业大学,2023. LI G S. Study on coupling mechanism and coordination technology of mining and recovery in eastern coal‑grain composite area[D]. Xuzhou:China University of Mining and Technology,2023. [74]李俊颖,李新举,赵跃伦,等. 不同复垦方式对煤矿复垦区土壤养分状况的影响[J].山东农业大学学报(自然科学版),2017,48(2):186‑191. LI J Y,LI X J,ZHAO Y L,et al. The influence of different reclamation modes on soil nutrient in coal mine plots[J]. Journal of Shandong Agricultural University(Natural Science Edition),2017,48(2):186‑191. [75]马守臣,王新生,刘赛赛,等. 不同耕作方式对矿区复垦耕地的碳库时间效应和耕地生产力的影响[J]. 煤炭学报,2023,48(7):2858‑2868. MA S C,WANG X S,LIU S S,et al. Temporal response of soil carbon pool and agricultural productivity to different tillage methods in reclaimed land of mining area[J]. Journal of China Coal Society,2023,48(7):2858‑2868. [76]WANG X F,ZHANG W W,ZHAO X H,et al.Sustaining carbon storage:An analysis of land use and conservation strategies in China’s Huang‑Huai‑Hai Plain[J]. Sustainability,2025,17(1):139. [77]蒋志洋. 采煤沉陷耕地土壤肥力质量提升与镉污染控制研究[D]. 淮南:安徽理工大学,2024. JIANG Z Y. Study on improvement of soil fertility quality and cadmium pollution control in coal mining subsidence farmland[D]. Huainan:Anhui University of Science and Technology,2024.[78]罗贞宝,李志宏,朱经伟,等. 长期有机无机配施对土壤团聚体及有机碳的影响[J].中国土壤与肥料,2024(10):1‑8. LUO Z B,LI Z H,ZHU J W,et al. Effects of long‑term combined organic‑inorganic fertilizer application on soil aggregates and organic carbon[J].Soil and Fertilizer Sciences in China,2024(10):1‑8.[79]张军,蔺亚青,胡方洁,等. 土壤重金属污染联合修复技术研究进展[J].应用化工,2018,47(5):1038‑1042. ZHANG J,LIN Y Q,HU F J,et al. Joint remediation technology of heavy metal pollution in soils[J].Applied Chemical Industry,2018,47(5):1038‑1042.[80]UPADHYAY N,VISHWAKARMA K,SINGH J,et al.Tolerance and reduction of chromium(VI)by Bacillus sp.MNU16 isolated from contaminated coal mining soil [J]. Frontiers in Plant Science,2017,8:778. [81]SHYLLA L,BARIK S K,JOSHI S R. Characterization and bioremediation potential of native heavy‑metal tolerant bacteria isolated from rat‑hole coal mine environment[J]. Archives of Microbiology,2021,203(5):379‑2392. [82]范美玉,黎妮,贾雨田,等. 耐镉阿氏芽孢杆菌缓解水稻受镉胁迫的研究[J].农业环境科学学报,2021,40(2):279‑286. FAN M Y,LI N,JIA Y T,et al. Study on the mitigation of cadmium stress in rice by cadmium‑resistant Bacillus aryabhattai[J].Journal of Agro‑Environment Science,2021,40(2):279‑286.
[83]魏忠平,谷雷严,罗庆,等. 草酸强化超富集植物东南景天修复镉铅污染土壤研究[J]. 沈阳农业大学学报,2020,51(6):734‑740.
[84]吴萍,张杏锋,高波,等. 微塑料对超富集植物少花龙葵Cd累积的影响[J]. 环境科学与技术,2022,45(1):174‑181.
[85]范拴喜,张楠,孙旻涵,等. Pb、Zn和Cd复合重金属潜在超富集植物的筛选与胁迫响应特征[J].环境科学,2024,45(8):4870‑4882.
[86]贺瑶,林华,俞果,等. 铬处理下超富集植物李氏禾根际溶解氧时空分布特征[J].土壤,2022,54(5):1024‑1031. [87]REGINI G,BETTARINI I,DAINELLI M,et al. Highly distinctive population‑specific thallium hyper‑tolerance and hyperaccumulation in Silene latifolia[J].Environmental and Experimental Botany,2024,228:106005.
[88]陈昌东,张安宁,腊明,等. 平顶山矿区矸石山周边土壤重金属污染及优势植物富集特征[J].生态环境学报,2019,28(6):1216‑1223.
[89]毕银丽,郭晨,王坤. 煤矿区复垦土壤的生物改良研究进展[J]. 煤炭科学技术,2020,48(4):52‑59.
[90]蒋志洋,周育智,陈道坤,等. 资源型城市采煤沉陷区不同人工植被对土壤养分、酶活性及有机碳库组分的影响:以安徽省淮南市为例[J]. 草原与草坪,2024,44 (5):72‑81.
[91]孙乐乐,查建军,马志帅,等. 不同作物对采煤复垦区表层土壤养分及酶活性的影响[J].西南农业学报,2019,32(9):2085‑2089.
[92]郭玉良,刘世奇,桑树勋,等. 淮南典型资源枯竭矿区生态系统碳增汇修复模式研究[J].西安建筑科技大学学报(自然科学版),2025,57(1):50‑59.
[93]陈浮,朱燕峰,马静,等. 东部平原采煤沉陷区降污固碳协同修复机制与关键技术[J].煤炭学报,2023,48(7):2836‑2849.
[94]李健明,康雨欣,蒋福祯,等. 基于Meta分析的煤矿区植被恢复对土壤有机碳储量的影响[J].环境科学,2024,45(3):1629‑1643.
[95]许庆,秦凯,鹿凡,等. 煤炭资源枯竭转型城市植被碳汇变化观测:以徐州为例[J].煤炭学报,2023,48(7):2916‑2924.
[96]白懿杭,侯赛赛,赵玉璞,等. 农田土壤有机碳积累和团聚体稳定过程及其相互作用关系[J].中国土壤与肥料,2024(7):208‑220.
[97]安永齐,王小利,靳东升,等. 有机培肥显著提升矿区复垦土壤活性有机碳含量[J].植物营养与肥料学报,2020,26(6):1117‑1125.
[98]黄治宏,赵浩宾,王龙飞,等. 生物炭对土壤酶活性、生态功能研究进展及作用机制分析[J].中国土壤与肥料,2025(1):250‑259. |
[1] | 汤丰收,臧秀旺,韩锁义,张 俊,徐 静. 淮河流域夏播花生规范化种植技术集成与示范[J]. 河南农业科学, 2012, 41(6): 54-57. |
[2] | 刘艳波;宋小南. 淮河流域越冬花菜高产栽培技术[J]. 河南农业科学, 2004, 33(11): 72-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||