河南农业科学 ›› 2025, Vol. 54 ›› Issue (4): 155-166.DOI: 10.15933/j.cnki.1004-3268.2025.04.016
李琛昊1,2,王川1,3,李国强2,赵巧丽2,杨萍1,2,王凯4,常升龙3,郑国清2
LI Chenhao1,2,WANG Chuan1,3,LI Guoqiang2,ZHAO Qiaoli2,YANG Ping2,WANG Kai4,CHANG Shenglong3,ZHENG Guoqing2
摘要: 单株蒴果数是芝麻产量构成的重要因素。为实现单株芝麻蒴果的准确检测计数,使用目标检测、多目标追踪等技术,动态追踪单株蒴果,有助于提高芝麻育种和栽培管理效率。针对芝麻蒴果小目标、生长密集、遮挡重叠等现象,以YOLOv8-Track为基准模型,在特征融合网络中引入小目标检测头和Shuffle attention注意力机制,在模型后处理阶段引入MPDIOU损失函数,构建了SD-YOLOv8-Track模型。然后利用模型ByteTrack多目标追踪算法的ID计数方法,以芝麻单株旋转视频作为模型输入,追踪统计芝麻蒴果数。结果表明,以单幅图片为输入,SD-YOLOv8-Track模型检测蒴果的准确率、召回率、平均精度分别为92.25%、92.4%、92.58%,比原模型YOLOv8-Track分别提高5.94、6.6、6.31百分点。以单株旋转视频为输入,SD-YOLOv8-Track模型的多目标追踪准确率、多目标追踪精确率分别为89.42%、88.23%,比原模型分别提高4.23、4.60百分点。SD-YOLOv8-Track模型检测蒴果的平均计数准确率、漏检率、误检率分别为93.27%、3.85%、2.88%,平均计数准确率比原模型提高5.61百分点,漏检率和误检率比原模型分别降低3.84、1.77百分点。改进后的SD-YOLOv8-Track模型具有较好的芝麻单株蒴果检测性能,适用于芝麻单株蒴果的动态完整计数
中图分类号: