[1]梁颖,吴雪梅,林梦桦,等. 我国梨全产业链标准体系现状分析与思考[J]. 农产品质量与安全,2024(6):5‑11.
LIANG Y,WU X M,LIN M H,et al. Analysis and reflection on the current status of pear whole industry chain standard system in China[J]. Quality and Safety of Agro‑products,2024(6):5‑11.
[2]国家统计局农村社会经济调查司. 2023中国农村统计年鉴[M]. 北京:中国统计出版社,2023:176‑179.
Rural Socioeconomic Survey Department,National Bureau of Statistics. China rural statistical yearbook 2023[M]. Beijing:China Statistics Press,2023:176‑179.
[3]WU J,WANG Z W,SHI Z B,et al. The genome of the pear(Pyrus bretschneideri Rehd.)[J].Genome Research,2013,23(2):396‑408.
[4]杨健,李坤,王龙,等. 国内西洋梨的生态适应性及栽培区域分析[J]. 中国农学通报,2021,37(16):97‑101.
YANG J,LI K,WANG L,et al. Ecological adaptability and cultivation area of Pyrus communis in China[J].Chinese Agricultural Science Bulletin,2021,37(16):97‑101.
[5]谭旭,于云飞,王圣元,等. 梨种苗“砧木春早播和断根移栽”繁育技术研究[J].中国果树,2022(2):32‑37.
TAN X,YU Y F,WANG S Y,et al. Propagation of pear nursery stocks through seed sowing in early spring and transplanting with pruned roots[J]. China Fruits,2022(2):32‑37.
[6]李莉,宣景宏,杜国栋,等. 梨矮化砧木选育及其应用研究进展[J]. 北方果树,2015(1):1‑3.
LI L,XUAN J H,DU G D,et al. Progresses on the breeding and application of dwarfing rootstocks of pear[J]. Northern Fruits,2015(1):1‑3.
[7]刘晨露. 富平楸子根系氨基酸代谢对碱胁迫的响应机制研究[D]. 杨凌:西北农林科技大学,2023.
LIU C L. Response mechanisms of amino acid metabolism in roots of Malus prunifolia under alkali stress[D].Yangling:Northwest A&F University,2023.
[8]ZHANG Z Z,HE K N,ZHANG T,et al. Physiological responses of Goji berry(Lycium barbarum L.)to saline‑alkaline soil from Qinghai region,China[J].Scientific Reports,2019,9(1):12057.
[9]LI Q,LI M L,MA H Y,et al. Quantitative phosphoproteomic analysis provides insights into the sodium bicarbonate responsiveness of Glycine max[J].Biomolecules,2023,13(10):1520.
[10]VALIPOUR M,KHOSHGOFTARMANESH A H,BANINASAB B. Physiological responses of hawthorn(Crataegus persica Pojark.)and quince(Cydonia oblonga Mill. )rootstocks to bicarbonate‑induced iron deficiency in nutrient solution[J]. Journal of Plant Nutrition and Soil Science,2018,181(6):905‑913.
[11]FAN Y P,LU X K,CHEN X G,et al. Cotton transcriptome analysis reveals novel biological pathways that eliminate reactive oxygen species(ROS)under sodium bicarbonate(NaHCO3) alkaline stress [J]. Genomics,2021,113(3):1157‑1169.
[12]魏天娇. 紫花苜蓿(Medicago sativa L.)品种耐盐碱性田间鉴定与抗逆生理机制的研究[D]. 北京:中国科学院大学,2021.
WEI T J. Field identification of saline‑alkaline tolerance of alfalfa(Medicago sativa L.)cultivars and its physiological mechanism of stress tolerance[D].Beijing:University of Chinese Academy of Sciences,2021.
[13]PÉREZ‑MARTÍN L,ALMIRA M J,ESTRELA‑MURIEL L,et al. A role for root carbonic anhydrase βCA4 in the bicarbonate tolerance of Arabidopsis thaliana[J].Physiologia Plantarum,2024,176(6):e70026.
[14]PÉREZ‑MARTÍN L,BUSOMS S,TOLRÀ R,et al.Transcriptomics reveals fast changes in salicylate and jasmonate signaling pathways in shoots of carbonate‑tolerant Arabidopsis thaliana under bicarbonate exposure[J].International journal of Molecular Sciences,2021,22(3):1226.
[15]SONG J Q,WANG J C,QIN R,et al. RNA‑Seq‑based WGCNA reveals the physiological and molecular responses of poplar leaves to NaHCO3 stress[J]. Trees,2024,39(1):3.
[16]XIANG G Q,MA W Y,GAO S W,et al. Transcriptomic and phosphoproteomic profiling and metabolite analyses reveal the mechanism of NaHCO3‑induced organic acid secretion in grapevine roots[J]. BMC Plant Biology,2019,19(1):383.
[17]KANG Y C,YANG X Y,LIU Y H,et al. Integration of mRNA and miRNA analysis reveals the molecular mechanism of potato(Solanum tuberosum L.)response to alkali stress[J]. International Journal of Biological Macromolecules,2021,182:938‑949.
[18]楚乐乐,罗成科,田蕾,等. 植物对碱胁迫适应机制的研究进展[J].植物遗传资源学报,2019,20(4):836‑844.
CHU L L,LUO C K,TIAN L,et al. Research advance in plants’adaptation to alkali stress[J].Journal of Plant Genetic Resources,2019,20(4):836‑844.
[19]郭献平,吴中营,王东升,等. 杜梨根系铁吸收关键基因生物信息学分析及缺铁胁迫对其表达的影响[J].河南农业科学,2017,46(8):96‑101.
GUO X P,WU Z Y,WANG D S,et al. Bioinformatics analysis of iron uptake key gene in the root of Pyrus betulifolia and the effect of iron deficiency on its expression[J]. Journal of Henan Agricultural Sciences,2017,46(8):96‑101.
[20]LICHTENTHALER H K, WELLBURN A R.Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents[J].Biochemical Society Transactions,1983,11(5) :591‑592.
[21]刘正祥,张华新,杨秀艳,等. NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性[J]. 生态学报,2014,34(2):326‑336.
LIU Z X,ZHANG H X,YANG X Y,et al. Growth,and cationic absorption,transportation and allocation of Elaeagnus angustifolia seedlings under NaCl stress[J].Acta Ecologica Sinica,2014,34(2):326‑336.
[22]MORTAZAVI A,WILLIAMS B A,MCCUE K,et al.Mapping and quantifying mammalian transcriptomes by RNA‑Seq[J]. Nature Methods,2008,5(7):621‑628.
[23]车玉红,杨波,郭春苗,等. 榅桲果实CAD基因的克隆、序列分析及表达[J].新疆农业科学,2020,57(5):814‑821.
CHE Y H,YANG B,GUO C M,et al. Cloning,sequence analysis and expression of CAD gene in quince(Cydonia oblonga Mill)fruit[J]. Xinjiang Agricultural Sciences,2020,57(5):814‑821.
[24]董菁,张春宵,刘学岩,等. 碱胁迫条件下玉米苗期根部转录组表达谱分析[J].分子植物育种,2022,23(19):1‑17.
DONG J,ZHANG C X,LIU X Y,et al. Analysis of transcriptome expression profile of maize seedling roots under alkali stress[J]. Molecular Plant Breeding,2022,23(19):1‑17.
[25]DONG N Q,LIN H X. Contribution of phenylpropanoid metabolism to plant development and plant –environment interactions[J]. Journal of Integrative Plant Biology,2021,63(1):180‑209.
[26]MA Q,WANG H L,WU E G,et al. Comprehensive physiological,transcriptomic,and metabolomic analysis of the response of Panicum miliaceum L. roots to alkaline stress[J]. Land Degradation & Development,2023,34(10):2912‑2930.
[27] HU P,ZHANG K M,YANG C P. BpNAC012 positively regulates abiotic stress responses and secondary wall biosynthesis[J]. Plant Physiology,2019,179(2):700‑717.
[28]崔亚宁,满奕,宋程威,等. 植物凯氏带化学成分、生理功能及相关调控机制的研究进展[J].中国科学(生命科学),2020,50(2):102‑110.
CUI Y N,MAN Y,SONG C W,et al. Chemical components,physiological functions and regulation mechanism of plant Casparian strips[J].Scientia Sinica (Vitae),2020,50(2):102‑110.
[29]UDDIN N,LI X,ULLAH M W,et al. Lignin developmental patterns and Casparian strip as apoplastic barriers:A review[J]. International Journal of Biological Macromolecules,2024,260:129595.
[30]赵继发,沙伟,马天意. 类黄酮物质在植物逆境胁迫中的研究进展[J].高师理科学刊,2021,41(7):53‑59.
ZHAO J F,SHA W,MA T Y. Research progress of flavonoids in plants stresses[J]. Journal of Science of Teachers’College and University,2021,41(7):53‑59.
[31]POLISHCHUK O V. Stress‑related changes in the expression and activity of plant carbonic anhydrases[J].Planta,2021,253(2):58.
|