河南农业科学 ›› 2026, Vol. 55 ›› Issue (1): 1-15.DOI: 10.15933/j.cnki.1004-3268.2026.01.001
江明泽,闫建伟,邹传筑
收稿日期:2025-02-24
接受日期:2025-04-14
出版日期:2026-01-15
发布日期:2026-01-29
通讯作者:
闫建伟,副教授,博士,主要从事农业智能化技术与装备研究。E-mail:jwyan@gzu.edu.cn
作者简介:江明泽,在读硕士研究生,研究方向:机器视觉与深度学习。E-mail:17024572@qq.com
基金资助:JIANG Mingze,YAN Jianwei,ZOU Chuanzhu
Received:2025-02-24
Accepted:2025-04-14
Published:2026-01-15
Online:2026-01-29
摘要: 果蔬的成熟度与生产者和消费者紧密相关,其检测在提升消费者体验、提高收获时机准确性、延长货架期、减少浪费、提高产量与质量方面均发挥重要作用。然而,传统的人工检测果蔬成熟度的方式存在劳动强度大、成本高、效率低下等问题。近年来,随着计算机技术快速发展,数据驱动的果蔬成熟度检测方法使果蔬成熟度检测的自动化、智能化成为可能。从数据出发,对常用于果蔬成熟度检测的数据形式进行了全面的梳理,然后从传统图像处理算法、机器学习算法和深度学习算法3个方面阐述了果蔬成熟度检测算法的研究进展,并对现阶段农业领域中果蔬成熟度检测工程应用进行了系统性总结。在此基础上,进一步分析了数据驱动的果蔬成熟度检测方法在实际应用中面临的困难,并针对关键问题给出了可行的应对措施与研究思路,最后,对果蔬成熟度检测技术在农业领域中未来的发展方向进行了分析和展望,旨在为果蔬成熟度检测技术的进一步研究与应用提供理论参考和实践借鉴。
中图分类号:
江明泽, 闫建伟, 邹传筑. 果蔬成熟度检测关键技术研究进展[J]. 河南农业科学, 2026, 55(1): 1-15.
JIANG Mingze, YAN Jianwei, ZOU Chuanzhu. A Review of Key Technologies in Fruits and Vegetables Maturity Detection[J]. Journal of Henan Agricultural Sciences, 2026, 55(1): 1-15.
| [1]中华人民共和国国家统计局. 中国统计年鉴[J]. 北京:中国统计出版社,2024. National Bureau of Statistics of the People’s Republic of China. China statistical yearbook[J]. Beijing:China Statistical Publishing House,2024. [2]中华全国供销合作总社. 番茄:GH/T 1193—2021[S]. 北京:中国标准出版社,2021. All China Federation of Supply and Marketing Cooperatives. Tomatoes:GH/T 1193—2021[S]. Beijing:China Standard Press,2021.[3]TIAN S J,QU M Z,XU H R. Establishment of evaluation criterion based on starch dyeing method and implementation of optical and acoustic techniques for postharvest determination of “HongYang” kiwifruit ripeness[J].European Journal of Agronomy,2023,142:126682. [4]马毅,汪西原. 基于近红外光谱无损检测的水果品质定量分析与预测[J].农业科学研究,2010,31(3):16‐20. MA Y,WANG X Y. Fruit quality quantitative analysis and prediction based on near infrared spectroscopy non‐destructive testing technology[J].Journal of Agricultural Sciences,2010,31(3):16‐20.[5]BÜNING‐PFAUE H. Analysis of water in food by near infrared spectroscopy[J]. Food Chemistry,2003,82(1):107‐115. [6]LU R. Predicting firmness and sugar content of sweet cherries using near‐infrared diffuse reflectance spectroscopy[J]. Transactions of the ASAE,2001,44(5):1265‐1271. [7]KERESZTURY G,CHALMERS J M,GRIFFITH P R.Raman spectroscopy:Theory[J]. Handbook of Vibrational Spectroscopy,2002,1:71‐87. [8]DHANANI T,DOU T Y,BIRADAR K,et al. Raman spectroscopy detects changes in carotenoids on the surface of watermelon fruits during maturation[J].Frontiers in Plant Science,2022,13:832522. [9]SHARMA S, BARAN C, TRIPATHI A, et al.Non‐destructive monitoring of the ripening of plums using confocal micro‐Raman and laser induced fluorescence spectroscopy[J]. Analytical Letters,2024,57(4):531‐548. [10]URBANO BRON I,VASCONCELOS RIBEIRO R,AZZOLINI M,et al. Chlorophyll fluorescence as a tool to evaluate the ripening of‘Golden’papaya fruit[J].Postharvest Biology and Technology,2004,33(2):163‐173. [11]BETEMPS D L,FACHINELLO J C,GALARÇA S P,et al. Non‐destructive evaluation of ripening and quality traits in apples using a multiparametric fluorescence sensor[J]. Journal of the Science of Food and Agriculture,2012,92(9):1855‐1864. [12]刘海军,赵文锋,刘韵锋,等. 基于ANN和贝叶斯优化算法的香蕉成熟度检测模型研究[J].现代农业装备,2021,42(5):42‐46. LIU H J,ZHAO W F,LIU Y F,et al. Model for detecting banana maturity based on artificial neural network and Bayesian optimization algorithm[J].Modern Agricultural Equipment,2021,42(5):42‐46. [13]PEI S C,HORNG J H. Circular arc detection based on Hough transform[J].Pattern Recognition Letters,1995,16(6):615‐625. [14]GHAZANFARI A,IRUDAYARAJ J,KUSALIK A,et al. Machine vision grading of pistachio nuts using Fourier descriptors [J]. Journal of Agricultural Engineering Research,1997,68(3):247‐252.
[15]李云捷,陈振国,孙敬国,等. 基于XGBoost算法的烤烟采收成熟度图像识别[J].中国烟草学报,2024,30(3):85‐94.
[16]王书志,张建华,冯全. 四种成像技术在水果表面缺陷检测的应用[J]. 中国农机化,2009,30(6):86‐89.
[17]李玥,罗滔. 深度学习理论的高光谱图像分类方法[J]. 激光杂志,2020,41(9):221‐224. [18]MARTÍNEZ‐DOMINGO M Á,VALERO‐BENITO E M,HERNÁNDEZ‐ANDRÉS J. Multispectral and hyperspectral imaging[M]//Non‐invasive and non‐destructive methods for food integrity. Cham:Springer Nature Switzerland,2024:175‐201.
[19]王亚洲,肖志云. 基于双分支卷积网络的玉米叶片叶绿素含量高光谱和多光谱协同反演[J]. 农业机械学报,2024,55(1):196‐202. [20]STILL C,POWEll R,AUBRECHT D,et al. Thermal imaging in plant and ecosystem ecology:Applications and challenges[J]. Ecosphere,2019,10(6):e02768. [21]MONTANARO G,DICHIO B,XILOYANNIS C,et al.Fruit transpiration in kiwifruit:Environmental drivers and predictive model[J]. AoB Plants,2012,2012:pls036. [22]VADIVAMBAL R,JAYAS D S. Applications of thermal imaging in agriculture and food industry:A review[J].Food and Bioprocess Technology,2011,4(2):186‐199. [23]TAITI C,COSTA C,MENESATTI P,et al. Use of volatile organic compounds and physicochemical parameters for monitoring the post‐harvest ripening of imported tropical fruits[J]. European Food Research and Technology,2015,241(1):91‐102.
[24]余柳仪,陈淼芬,刘京宏,等. 桑不同部位及不同成熟度桑葚挥发性成分分析[J]. 湖南农业大学学报(自然科学版),2020,46(1):63‐69.
[25]伍蓥芮,张志勇,韩小平,等. 基于图像处理技术的番茄成熟度检测研究[J]. 农业技术与装备,2021(4):50‐51.
[26]赵文锋,朱菊霞,董杰. 基于图像处理的香蕉成熟度检测系统[J]. 现代农业装备,2016,37(5):33‐36. [27]SALUNKHE R P,PATIL A A. Image processing for mango ripening stage detection:RGB and HSV method [C]//2015 Third International Conference on Image Information Processing(ICIIP). Waknaghat,India:IEEE,2015.
[28]叶晋涛,王运祥,杨杰,等. 哈密瓜颜色特征提取及成熟度分级的研究[J].石河子大学学报(自然科学版),2016,34(1):106‐111. [29]AZARMDEL H,JAHANBAKHSHI A,MOHTASEBI S S,et al. Evaluation of image processing technique as an expert system in mulberry fruit grading based on ripeness level using artificial neural networks(ANNs)and support vector machine(SVM)[J]. Postharvest Biology and Technology,2020,166:111201. [30]RAJ T,HASHIM F H,HUDDIN A B,et al.Classification of oil palm fresh fruit maturity based on carotene content from Raman spectra[J]. Scientific Reports,2021,11:18315. [31]HAZIR M H M,SHARIFF A R M,AMIRUDDIN M D.Determination of oil palm fresh fruit bunch ripeness:Based on flavonoids and anthocyanin content[J].Industrial Crops and Products,2012,36(1):466‐475. [32] BENMOUNA B,GARCÍA‐MATEOS G,SABZI S,et al.Convolutional neural networks for estimating the ripening state of Fuji apples using visible and near‐infrared spectroscopy[J]. Food and Bioprocess Technology,2022,15(10):2226‐2236. [33]THAKUR R,SURYAWANSHI G,PATEL H,et al. An innovative approach for fruit ripeness classification[C]//2020 4th International Conference on Intelligent Computing and Control Systems(ICICCS). Madurai,India:IEEE,2020.
[34]金科,郭志强,曾云流,等. 结合3DCNN和Haar小波滤波器的高光谱猕猴桃品质分类[J]. 激光与光电子学进展,2023,60(20):49‐58. [35]HU H Q,MEI Y L,WEI Y P,et al. Chemical composition prediction in goji(Lycium barbarum)using hyperspectral imaging and multi‐task 1DCNN with attention mechanism[J]. LWT,2024,204:116436. [36]SU Z Z,ZHANG C,YAN T Y,et al. Application of hyperspectral imaging for maturity and soluble solids content determination of strawberry with deep learning approaches[J]. Frontiers in Plant Science,2021,12:736334. [37]ZHANG D F,ZHANG J,PENG B,et al. Hyperspectral model based on genetic algorithm and SA‐1DCNN for predicting Chinese cabbage chlorophyll content[J].Scientia Horticulturae,2023,321:112334. [38]YANG J,LUO X,ZHANG X L,et al. A deep learning approach to improving spectral analysis of fruit quality under interseason variation[J]. Food Control,2022,140:109108.
[39]杨斌,钟金英. 卷积神经网络的研究进展综述[J]. 南华大学学报(自然科学版),2016,30(3):66‐72. [40]GAN H,LEE W S,ALCHANATIS V,et al. Active thermal imaging for immature Citrus fruit detection[J].Biosystems Engineering,2020,198:291‐303. [41]LIU Z C,XIAO D Y. Recognition method of mature strawberry based on improved SSD deep convolution neural network[M]//Bio‐inspired computing:Theories and applications. Singapore:Springer Singapore,2020. [42]SAPKOTA R,MENG Z C,CHURUVIJA M,et al.Comprehensive performance evaluation of YOLO11,YOLOv10,YOLOv9 and YOLOv8 on detecting and counting fruitlet in complex orchard environments[J].Arxiv Preprint Arxiv,2024,2407:12040. [43]WEI J F,NI L Y,LUO L,et al. GFS‐YOLO11:A maturity detection model for multi‐variety tomato[J].Agronomy,2024,14(11):2644.
[44]薛君蕊,王昱潭,曲爱丽,等. 基于改进FCN-8s的灵武长枣图像分割方法[J]. 农业工程学报,2021,37(5):191‐197. [45]NAGARAJU Y,VENKATESH,VENUGOPAL K R.Deep learning based semantic segmentation to detect ripened strawberry guava fruits [C]//2022 IEEE International Conference on Electronics,Computing and Communication Technologies(CONECCT).Bangalore,India:IEEE,2022. [46]CAI C Q,TAN J W,ZHANG P S,et al. Determining strawberries’varying maturity levels by utilizing image segmentation methods of improved DeepLabV3+[J].Agronomy,2022,12(8):1875.
[47]龙洁花,赵春江,林森,等. 改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法[J]. 农业工程学报,2021,37(18):100‐108. [48]TANG C,CHEN D,WANG X,et al. A fine recognition method of strawberry ripeness combining Mask R‐CNN and region segmentation[J]. Frontiers in Plant Science,2023,14:1211830. [49]ARUNIMA P L,GOPINATH P P,GEETHA LEKSHMI P R,et al. Digital assessment of post‐harvest Nendran banana for faster grading:CNN‐based ripeness classification model[J]. Postharvest Biology and Technology,2024,214:112972.
[50]郑凯文,张骋烯,陈爱琴. 基于YOLOv5的水果识别及成熟度检测系统[J]. 无线互联科技,2024,21(19):70‐74. [51]TAPARUGSSANAGORN A,SIWAMOGSATHAM S,POMALAZA‐RÁEZ C. A non‐destructive oil palm ripeness recognition system using relative entropy[J].Computers and Electronics in Agriculture,2015,118:340‐349. [52]SUHARJITO,ELWIREHARDJA G N,PRAYOGA J S.Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches[J].Computers and Electronics in Agriculture,2021,188:106359. [53]NOGUERA M,MILLAN B,ANDÚJAR J M. New,low‐cost,hand‐held multispectral device for in‐field fruit‐ripening assessment[J]. Agriculture, 2023,13(1):4. [54]WANG Y Q,GOU W B,WANG C Y,et al. Method for the real‐time detection of tomato ripeness using a phenotype robot and RP‐YolactEdge[J]. International Journal of Agricultural and Biological Engineering,2024,17(2):200‐210. [55]NOGUEIRA MARTINS R,DE ASSIS DE CARVALHO PINTO F,MARÇAL DE QUEIROZ D,et al. Digital mapping of coffee ripeness using UAV‐based multispectral imagery[J]. Computers and Electronics in Agriculture,2023,204:107499.
[56]何婕,罗妤. 果实成熟度识别机器人设计:基于近红外线信号处理[J]. 农机化研究,2016,38(8):194‐198. [57]QIU A,YOUNG C,GUNDERMAN A L,et al.Tendon‐driven soft robotic gripper with integrated ripeness sensing for blackberry harvesting[C]//2023 IEEE International Conference on Robotics and Automation(ICRA).London,United Kingdom:IEEE,2023. [58]TSIRONIS V,BOUROU S,STENTOUMIS C. Tomatod:Evaluation of object detection algorithms on a new real‐world tomato dataset[J]. The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2020,XLIII‐B3‐2020:1077‐1084. [59]ALTAHERI H,ALSULAIMAN M,MUHAMMAD G,et al.Date fruit dataset for intelligent harvesting[J].Data in Brief,2019,26:104514. [60]COSSIO‐MONTEFINALE L,RUIZ‐DEL‐SOLAR J,VERSCHAE R. Cherry CO dataset:A dataset for cherry detection,segmentation and maturity recognition[J]. IEEE Robotics and Automation Letters,2024,9(6):5552‐5558. [61]ZHAO J F,ALMODFER R,WU X Y,et al.A dataset of pomegranate growth stages for machine learning‐based monitoring and analysis[J].Data in Brief,2023,50:109468. [62]SKOLIK P,MORAIS C L M,MARTIN F L,et al.Determination of developmental and ripening stages of whole tomato fruit using portable infrared spectroscopy and chemometrics[J].BMC Plant Biology,2019,19(1):236. [63]ANDERSON N T,WALSH K B,SUBEDI P P,et al.Achieving robustness across season,location and cultivar for a NIRS model for intact mango fruit dry matter conten[t J]. Postharvest Biology and Technology,2020,168:111202.
[64]张鹏,李江阔,冯晓元,等. 可见/近红外漫反射光谱预测磨盘柿成熟度[J].食品研究与开发,2013,34(11):91‐94.
[65]薛建新,张淑娟,张晶晶. 基于高光谱成像技术的沙金杏成熟度判别[J].农业工程学报,2015,31(11):300‐307. [66]ZHANG R Q,DONG W H,HOU P Z,et al.YOLOv11‐BSD:Blueberry maturity detection under simulated nighttime conditions evaluated with causal analysis[J]. Smart Agricultural Technology,2025,12:101314. [67]KO K,JANG I,CHOI J H,et al. Stochastic decision fusion of convolutional neural networks for tomato ripeness detection in agricultural sorting systems[J].Sensors,2021,21(3):917. [68]ZHANG C,GUO C T,LIU F,et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine[J].Journal of Food Engineering,2016,179:11‐18.
[69]WANG A C,QIAN W H,LI A,et al. NVW‐YOLOv8s:An improved YOLOv8s network for real‐time detection and segmentation of tomato fruits at different ripeness stages[J].Computers and Electronics in Agriculture,2024,219:108833. [71]JUNOS M H, MOHD KHAIRUDDIN A S,THANNIRMALAI S,et al. Automatic detection of oil palm fruits from UAV images using an improved YOLO mode[l J]. The Visual Computer,2022,38(7):2341‐2355.
[72]王立舒,秦铭霞,雷洁雅,等. 基于改进YOLOv4-Tiny 的蓝莓成熟度识别方法[J]. 农业工程学报,2021,37(18):170‐178. [73]MOMENY M,JAHANBAKHSHI A,NESHAT A A,et al. Detection of Citrus black spot disease and ripeness level in orange fruit using learning‐to‐augment incorporated deep networks[J]. Ecological Informatics,2022,71:101829. [74]SANCHEZ F J,TABARES M S,AGUILAR J. Synthetic hyperspectral data for avocado maturity classification [M]//Advances in computing. Cham:Springer Nature Switzerland,2023:259‐270. [75]SHIDDIQ M,SAKTIOTO S,SALAMBUE R,et al.Multispectral imaging and deep learning for oil palm fruit bunch ripeness detection[J]. Bulletin of Electrical Engineering and Informatics,2024,13(6):4168‐4181. [76]DUTTA J,PATWARDHAN M,DESHPANDE P,et al.Zero‐shot transfer learned generic AI models for prediction of optimally ripe climacteric fruits[J].Scientific Reports,2023,13:7347.
[77]韩雪,张磊,赵雅菲,等. 基于CNN和XgBoost的香蕉成熟度判别[J]. 食品与机械,2024,40(4):127‐135. [78]OLISAH C C,TREWHELLA B,LI B,et al.Convolutional neural network ensemble learning for hyperspectral imaging‐based blackberry fruit ripeness detection in uncontrolled farm environment[J].Engineering Applications of Artificial Intelligence,2024,132:107945. [79]AL RIZA D F,YOLANDA J,TULSI A A,et al.Mandarin orange(Citrus reticulata Blanco cv. Batu 55)ripeness level prediction using combination reflectance‐fluorescence spectroscopy[J].Spectrochimica Acta Part A,Molecular and Biomolecular Spectroscopy,2023,302:123061.
[80]李莹,刘梦莲,何自芬,等. 基于改进YOLOv8s的柑橘果实成熟度检测[J].农业工程学报,2024,40(24):157‐164.
[81]QI H N,SHEN C,CHEN G,et al. Rapid and non‐destructive determination of soluble solid content of crown pear by visible/near‐infrared spectroscopy with deep learning regression[J]. Journal of Food Composition and Analysis,2023,123:105585.
[87]汤泽政,伍奕桦,徐新明,等. 基于改进YOLOv7-Tiny 的成熟草莓识别模型研究[J]. 江西农业大学学报,2023,45(6):1528‐1542. [88]CHEN G J,HOU Y J,CUI T,et al. YOLOv8‐CML:A lightweight target detection method for color‐changing melon ripening in intelligent agriculture[J]. Scientific Reports,2024,14:14400.
[89]罗志聪,何陈涛,陈登捷,等. 基于轻量化YOLOv8s-GD的自然环境下百香果快速检测模型[J]. 农业机械学报,2024,55(8):291‐300. [90]WANG D D,HE D J. Channel pruned YOLOV5s‐based deep learning approach for rapid and accurate apple fruitlet detection before fruit thinning[J].Biosystems Engineering,2021,210:271‐281.
[91]李雷,黎远松,石睿. 基于FPGA的YOLOv4-Tiny网络的硬件加速与实现[J/OL]. 重庆工商大学学报(自然科学版),2024:1‐9[2024‐07‐30]. https://kns.cnki.net/KCMS/detail/detail. aspx?filename=YZZK20240729002&dbname=CJFD&dbcode=CJFQ.
|
| [1] | 刘程宏, 张舜, 黄文, 张晓炎, 杨海龙, 付诗雨, 詹丽娟. 壳聚糖涂层在果蔬贮藏保鲜上的研究与应用[J]. 河南农业科学, 2025, 54(7): 1-11. |
| [2] | 盛彬. 基于改进YOLOv5 的黄花成熟度检测方法[J]. 河南农业科学, 2024, 53(8): 145-153. |
| [3] | 冯晓, 张辉, 刘正, 张会芳, 陈海燕, 赵威, 郑国清, 马中杰. 基于深度学习的玉米包衣种子品种识别[J]. 河南农业科学, 2024, 53(7): 160-167. |
| [4] | 戴佳兵, 宋春芳, 凌彩金, 李臻锋, 孙崇高. 基于YOLOv5s-SE和通道剪枝的虫咬紫金蝉茶检测方法研究[J]. 河南农业科学, 2024, 53(5): 157-163. |
| [5] | 钟正扬, 云利军, 杨璇玺, 陈载清. 基于改进YOLOX 的自然环境下核桃识别算法研究[J]. 河南农业科学, 2024, 53(1): 152-161. |
| [6] | 于雁南, 莫泳彬, 严继池, 熊春林, 窦世卿, 杨荣峰. 基于改进ShuffleNet V2 的柑橘病害识别研究[J]. 河南农业科学, 2024, 53(1): 142-151. |
| [7] | 陈聪, 于啸, 宫琪. 基于改进残差网络的苹果叶片病害识别研究[J]. 河南农业科学, 2023, 52(4): 152-161. |
| [8] | 臧贺藏, 王从胜, 赵巧丽, 赵晴, 张杰, 李国强, 郑国清. 基于深度学习的小麦倒伏自动分类方法研究[J]. 河南农业科学, 2023, 52(11): 167-173. |
| [9] | 杨文庆, 刘天霞, 唐兴萍, 徐国富, 马喆, 杨贺凯, 吴文斗. 智慧农业背景下的植物表型组学研究进展[J]. 河南农业科学, 2022, 51(7): 1-12. |
| [10] | 刁智华, 闫娇楠, 赵素娜, 贺振东. 基于图像处理的作物行识别算法研究进展[J]. 河南农业科学, 2022, 51(3): 12-19. |
| [11] | 董燕, 李环宇, 李卫杰, 李春雷, 刘洲峰. 基于联合剪枝深度模型压缩的种子分选方法研究[J]. 河南农业科学, 2022, 51(1): 162-170. |
| [12] | 郑二功,田迎芳,陈 涛. 基于深度学习的无人机影像玉米倒伏区域提取[J]. 河南农业科学, 2018, 47(8): 155-160. |
| [13] | 谌馥佳,燕照玲,李恩中. 现代果蔬保鲜技术及植物源果蔬保鲜剂研究进展[J]. 河南农业科学, 2016, 45(12): 7-12,44. |
| [14] | 王安建;侯传伟;魏书信. 生物技术在果蔬保鲜中的应用研究进展[J]. 河南农业科学, 2009, 38(9): 171-173. |
| [15] | 侯传伟;魏书信;王安建;. 鲜切果蔬品质劣变与控制[J]. 河南农业科学, 2008, 37(1): 96-98. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||