苜蓿尺蠖核型多角体病毒对甜菜夜蛾的 致病力和传播性研究

赵润 洲¹,徐艳聆 ^{1,2},秦 利^{2*},张 涛²,聂 磊²,王玲玲² (1. 河南科技学院, 河南 新乡 453002; 2. 沈阳农业大学 生物科学技术学院, 辽宁 沈阳 110161)

摘要:研究了苜蓿尺蠖核型多角体病毒 $A \, cM \, NPV - A \, aIT \, 对甜菜夜蛾的致病力和传播流行性。结果表明: <math>A \, cM \, NPV - A \, aIT \, 对甜菜夜蛾有较高的毒力,温度对毒力有很大的影响,在 <math>17 \, ^{\circ}$ 与 $23 \, ^{\circ}$ 的条件下, LC_{50} 分别为 $10^{4.56}$, $10^{5.92}$ PIB/mL;感病 幼虫的尸体容易腐烂流脓,且脓汁内含有大量病毒。低温贮藏对该病毒的毒力没有明显影响,说明 $A \, cM \, NPV - A \, aIT \,$ 有较好的传播流行性,是一种理想的生防病毒。

关键词: 甜菜夜蛾; 苜蓿尺蠖核型多角体病毒; 致病力; 流行性 中图分类号: S436.3 文献标识码: A 文章编号: 1004-3268(2007)06-0074-03

The Pathogenicity and Prevalence of AcMNPV to Spodoptera exigua

ZHAO Run zhou¹, XU Yan ling^{1,2}, QIN Li^{2*}, ZHANG Tao², NIE Lei², WANG Ling ling²
(1. Henan Institute of Science and Technology, Xinxiang 453002, China;

2. College of Biotechnology, Shenyang Agricultural University, Shenyang 110161, China)

Abstract: The pathogenicity and prevalence of AcMNPV to Spodoptera exigua was studied in the paper. The results showed that the AcMNPV – AaIT had high virulence to Spodoptera exigua. The influence of temperature on toxicity of AcMNPV – AaIT was significant. At 17 °C and 23 °C, the LC50 of AcMNPV – AaIT to Spodoptera exigua larvae was 10^{4.56} and 10^{5.92} PIB/mL, respectively. The dead insects infected by the AcMNPV – AaIT were decayed and suppurated easily and the pus contained a mass of virus. The toxicity of AcMNPV – AaIT stored at 4 °C was not obviously changed. This suggested that the AcMNPV – AaIT has fairly good propagation and is a hopeful virus for biological control.

Key words: Spodoptera exigua; AcMNPV - AaIT; Pathogenicity; Prevalence

甜菜夜蛾(Spodoptera exigua)属鳞翅目夜蛾科,是一种迁飞性强、间歇爆发危害的世界性害虫^[1]。在我国主要寄主有 14 科 41 种以上,在豫北常年发生 5~6 代,世代重叠,主要危害甜菜、莙荙菜、白菜、青菜(小白菜)、卷心菜、萝卜、胡萝卜、苋菜、菠菜等多种蔬菜,近年来的发生和危害逐年加

重,经常爆发成灾,已逐步上升为玉米、棉花、高粱、小麦等主要大田作物的重要害虫。 苜蓿尺蠖核型多角体病毒(AcMNPV)是一种从苜蓿尺蠖蛾中分离出的一株多包埋体的昆虫杆状病毒,宿主范围非常广泛,能感染 30 多种鳞翅目昆虫,尤其对甜菜夜蛾有较高的感染致死力[3],被国内外公认为是安全

收稿日期: 2007 - 01 - 18

基金项目: 国家教委留学回国人员科研启动资金(367号); 河南科技学院高学历人才科研启动项目作者简介: 赵润洲(1978-), 男, 辽宁本溪人, 农艺师, 主要从事园艺害虫生物防治研究。通讯作者: 秦 利(1963-), 男, 吉林松原人, 教授, 主要从事柞蚕生物技术研究。

高效的昆虫病毒。为了使 AcMNPV 成为理想的生物杀虫剂,Merry weather 将人工合成的蝎子毒素基因重组到 AcMNPV 的 P10 启动子下,建立了基因重组核型多角体病毒,大大增加了该病毒对鳞翅目昆虫的毒力^[4,5]。研究苜蓿尺蠖核型多角体病毒对甜菜夜蛾的致病力和传播性,目的在于寻求对甜菜夜蛾综合防治的新途径。

1 材料和方法

1.1 供试昆虫

甜菜夜蛾由中国科学院动物研究所提供。

1.2 供试病毒

野生型病毒(AcMNPV-C6)和基因重组病毒(AcMNPV-AaIT)由美国加利福尼亚大学提供。

1.3 病毒的制备和浓度的测定

收集感染病毒而死的幼虫, 匀浆后用 3 层纱布过滤, 以 $500 \, r/min$ 离心 $30 \, s$, 弃去残渣碎片, 再以 $4000 \, r/min$ 离心 $20 \, min$, 弃去上清, 无菌 PBS 悬浮后, 交替进行 3 次即可获得多角体粗提物, 再经 $30\% \sim 60\% \, (w/w)$ 蔗糖梯度 $12\,000\, r/min$ 离心 $30\, min$, 获得较为纯净的多角体。浓度采用血球计数板计数, 多角体悬浮液保存在 4° 下待用。病毒接种和感染病毒幼虫多角体的产生量测定参照 $Kunimil^{\circ}$ 的方法。

1.4 患病幼虫尸体腐烂速度的测定

参照 Fuxa^[7] 法, 用钝头金属棒接触感染 AcM-N PV 的幼虫尸体, 如体壁一触即破则说明该尸体腐烂, 直到只剩下极少数尸体被确定不会腐烂停止调查。

2 结果与分析

2.1 AcM NPV - AaIT 对甜菜夜蛾的毒力

在 (17 ± 1) °C, (23 ± 1) °C, RH 75%条件下, Ae MNPV – AaIT 添食甜菜夜蛾三龄幼虫,每头幼虫5 μ L。从表1可看出,AcMNPV – AaIT 对甜菜夜蛾有较高的毒力,根据死亡率得出17°C下 AcM N-PV – AaIT 的浓度对数与死亡率概率值的回归方程为y=0.778x+0.39,LC50为 $10^{5.92}$ PIB/mL,由于方程存在误差,实际上当病毒浓度为 10^6 PIB/mL时死亡率仅为 30%,23 °C的毒力回归方程为 y=1.485x-1.778,LT50为 $10^{4.56}$ PIB/mL,当浓度达到 10^6 PIB/mL 时,死亡率达 100%,而 17 °C仅为 30%;从致死时间上看,23 °C下平均致死时间和 LT50均比 17 °C下短 $1\sim2$ d,说明温度对 AcMNPV – AaIT 的

毒力有较大的影响,一定的温度范围内病毒的毒力 随温度的升高而加强。

表 1 AcMNPV - AaIT对甜菜夜蛾的毒力

接种浓度 (PIB/L)	感染死亡率(%)		平均致死时间(d)		LT 50 (d)	
	17℃	23℃	17℃	23℃	17℃	23℃
$c\mathbf{k}$	_	_	_	_	_	_
10^{4}	10.0	26. 7	9. 0	7.3	_	_
10 ⁵	26. 7	60.0	8.6	6.8	_	_
10^{6}	30.0	100.0	7. 2	5. 5	_	4. 9
10^{7}	83. 3	100.0	6. 7	5. 2	6. 5	4. 7
108	96. 7	100.0	6. 7	5. 1	6. 1	4. 5

2.2 患病幼虫尸体的腐烂速度及病毒的浓度

用浓度为 10^7 PIB/mL 的病毒悬液感染甜菜夜蛾四龄幼虫,每头添食 5μ L,在幼虫死亡后,每隔 12h 调查 1 次尸体腐烂数,结果如图 1。从图 1 中可看出感染野生型病毒 AcM NPV -C6 的幼虫在死亡当天大多数一触即破流出浓汁,而感染重组型病毒 AcM NPV -AaIT 的幼虫则在死亡后的 $3\sim 6d$ 内才能腐烂,但通过显微镜下计数可得感染 AcM PV -C6 和 AcM NPV -AaIT 致死的幼虫尸体中病毒产量无显著差异,均为为 10^8 PIB /头,按每头幼虫取食病毒约为 5×10^4 PIB,产量约为取食量的 2000 倍,所以该病毒在活虫体内有很高的自然繁殖率,能形成较强的自然流行性。

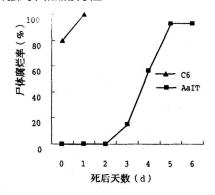


图 1 AcMNPV 感染死亡后甜菜夜蛾尸体的腐烂速度

2.3 AcMNPV 的垂直传播

选取健康的五龄甜菜夜蛾幼虫, 饥饿过夜, 分别用浓度为 10^6 PIB/mL 的 A cM NPV – A aIT 和 A c M NPV – C6 感染, 选取未致死的蛾交配产卵, 卵经 5%的甲醛消毒 15 min, 观察 F_1 代幼虫死亡率, 并通过镜检判断病毒致死率, 结果见表 2。 A cM NPV – A aIT 和 A cM NPV – C 6对甜菜 夜蛾都 不存在垂直

表 2 感染 AcMNPV 甜菜夜蛾的传代发病率

病毒种类	总虫数 (头)	死亡率 (%)	更正死亡率	病毒感染死亡率
ck	50	12. 0	0.0	0.0
AaIT	50	20. 0	7. 0	0.0
C 6	50	14. 0	_	_

传播, F1 代均未发现多角体病毒。

2.4 低温贮藏对AcMNPV-AaIT毒力的影响

采用在 4° 下冷藏 3 年的 AcM NPV - AaIT 病毒悬液, 在 23° 下处理甜菜夜蛾二龄幼虫, 并与新繁殖病毒进行比较, 结果如表 3。

表 3 贮藏 3年的 AcMNPV – AaIT 病毒对甜菜夜蛾的毒力作用

接种浓度 (PIB/L)	感染死亡率(%)		平均致死时间(d)		LT ₅₀ (d)	
	RT	RT'	RT	RT'	RT	RT'
ck	6. 7	6. 7	_	_	_	_
10^{6}	80. 8	83. 3	6. 2	5. 3	6. 1	5. 6
10^{7}	100. 0	100.0	5. 3	5.3	3. 2	5. 8
108	100. 0	100. 0	4. 7	4. 8	4. 2	4. 3

注: RT 为新繁殖的病毒, RT 为经过 3 年贮藏的病毒

从表 3 可看出, A cM NPV - A aIT 病毒悬液经过 3 年的冷藏,与新繁殖的病毒相比感染死亡率及致死时间没有明显差异。因此 A cM NPV - A aIT 制成生防制剂后,可以经过较长时间的冷藏,使用方便。

3 小结与讨论

- 2)温度对 $A \, cMN \, PV A \, aIT$ 的毒力有极大的影响, $23 \, ^{\mathbb{C}}$ 下的毒力显著比 $17 \, ^{\mathbb{C}}$ 的毒力高。 $17 \, ^{\mathbb{C}}$ 下当浓度为 $10^6 \, PIB \, /mL$ 时死亡率仅为 $30 \, ^{\mathbb{C}}$,而且致死时间也明显比 $23 \, ^{\mathbb{C}}$ 长。
- 3) 害虫感染多角体病毒后的症状一般为活动 迟缓, 食量减少, 体内组织液化, 死后尸体易烂, 流出 含有大量病毒的脓汁, 俗称"脓病", 这就造成了多角 体病毒很强的自然流行性, 重组型病毒的腐烂速度

虽然略比野生型的慢,但病毒在虫体内也有较高的繁殖率,说明重组型病毒 A cM NPV – A aIT 在自然界也存在了较高的流行性。

- 4) 在低温下病毒贮藏 3 年对毒力没有影响,说明该病毒在离开宿主的环境中能保持杀虫活力,主要是因为病毒包埋在多角体内,所以,可在宿主体外长时间存活,AcMNPV AaIT 病毒的这一优点不仅能加强在自然界的流行性,而且有利于该病毒制成生防制剂商品化生产。
- 5) 通过镜检 F1 代的方法确定了 A cM NPV 不存在经卵巢传递的垂直传播, 说明该病毒在环境中的流行主要靠患病幼虫间的水平传播, 和其死虫流出的脓汁在环境中的传播。

综上所述,AcMNPV - AaIT 是一种对甜菜夜蛾毒力较高,在自然界中易于流行的病毒,是一种较为理想的生防病毒。

参考文献:

- [1] 郭建平, 张建军, 史要强, 等. 甜菜夜蛾在豫西地区的生活史和不同温度发育历期研究[J]. 河南农业科学, 2005(8): 63-64.
- [2] 王春义. 甜菜夜蛾的发生及防治[J]. 河南农业科学, 2001(1): 21 22.
- [3] 胡蓉, 马永平, 徐进平, 等. AcNPV. Bt. En 复配剂对甜菜夜蛾幼虫的毒力测定[J]. 中国生物防治, 2002, 18 (1): 47-49.
- [4] 秦利, 张涛, 刘彦群, 等. 增效物质对核型多角体病毒 AcMNPV 的感染增效作用[J]. 中国生物防治, 2002, 18(1): 43-44.
- [5] 王玲玲, 樊虹, 徐艳聆, 等. 昆虫病毒在害虫生物防治中的应用 J]. 沈阳农业大学学报, 2004, 35(1): 76 79.
- [6] Fuxa J A, Fuxa R, Richter A R. Host insect survival time and disintergration in relation to population densi ty time and dispersion of recombinant and wild type nucleopolyhedroviruses [J]. Biological Control, 1998 12: 143-150.
- [7] Kunimi Y, Fuxa J R, Hammock B D. Comparison of wild type and genetically modified nuclear polyhedrosis viruses of Aurographa californica for mortality, virus replication and polyhedra production in Trichoplusia ni larvae[J]. Entomol Exp Appl, 1996, 81: 251 – 257.